Tutorial on Parametric Timed Automata for RT Scheduling Examples of scheduling models

Giuseppe Lipari and Étienne André

CRIStAL - Université de Lille

Models

Example 1: response time calculation

Example 2: Sensitivity on computation times

Example 3: Offsets

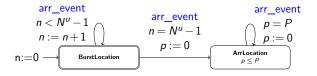
Models


Example 1: response time calculation

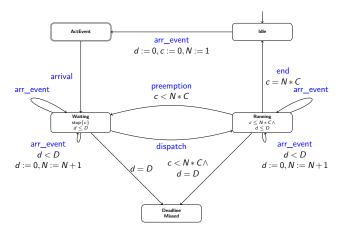
Example 2: Sensitivity on computation times

Example 3: Offsets

Arrival models


- A task is modeled by (at least) two automata: arrival automaton and job automaton
- The arrival automaton generates arrival events to activate the task's job
- A simple periodic arrival automaton:

- ► The sporadic arrival automaton is similar, substitute = with ≥ in the guard condition and remove the invariant
- WARNING: sporadic tasks generate a large state space, use with care!


Arrival curve

Useful to upper bound burst arrivals

Job automaton

The job automaton synchronizes with the arrival automaton and with the scheduler automaton

Job automaton

- The only possible parameter is the deadline *D*:
 - The computation time C cannot be a parameter
 - current limitation of the tool: we cannot express a multiplication between a parameter and a discrete variable in an expression
- To avoid this problem, we can use a different model which assumes deadline = period
 - ▶ therefore, the only parameter is the computation time *C*
- Currently, we cannot have a generic model with C and D both parameters
 - Work is in progress !!
- ► Notice that the period T can be a parameter of the arrival automaton (no restrictions)

Scheduler automaton

- Interacts with the job automata by synchronizing on events arrival, dispatch, preemption, end
- Basically, it represents the ready queue ordered by priority
 - One location for every configuration of the queue
- Not shown here
- This model can be reused for all task models

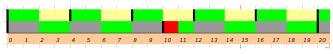
Models

Example 1: response time calculation

Example 2: Sensitivity on computation times

Example 3: Offsets

Generating PTA models


- In the following, we will generate PTA models for the IMITATOR tool using the RETIMI python scripts
 - https://github.com/YIYAYIYAYOUCHENG/RETIMI
 - Authors: Y. Sun and G. Lipari
- Usage:
 - to just generate the imitator model: generator.py --norun model.txt
 - to generate and launch IMITATOR generator.py model.txt

Response time calculation

Compute the worst-case response time of task τ₂ in the following system

Task	С	Т
$ au_1$	2	4
$ au_2$	5	10

- Iterative formula in Classic Scheduling Analysis (CSA)
- Gantt chart

Response time calculation

The system (again)

Task	С	Т
$ au_1$	2	4
$ au_2$	5	10

► With PTA:

- use D₂ as a parameter
- Files: response-time/response-time.txt and response-time/response-time.imi
- Imitator model generated with generator.py --norun response-time.txt
- You can run imitator with

imitator -mode EF -incl -merge response-time.imi

```
Fixpoint reached at a depth of 72: 184 states with 227

[AGsafe] Algorithm completed after 0.138 second.

Final constraint such that the system is correct:

tau2_D >= 11

This good constraint is exact (sound and complete)

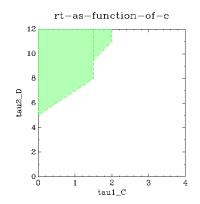
IMITATOR successfully terminated (after 0.138 second)
```

Response time as a function of the execution time

• Compute the response time of τ_2 as a function of C_1

Task
 C
 T

$$\tau_1$$
 ?
 4


 τ_2
 5
 10

- Not possible with CSA (iterative formula)
 - need to compute the response time for different values of C_1
- With PTA:
 - Use C_1 and D_2 as parameters
 - See file response-time/rt-as-function-of-c.txt and response-time/rt-as-function-of-c.imi
 - Imitator model and analysis generated with generator.py --cart --xmax 4 --ymax 12 rt-as-function-of-c.txt
 - Results:

```
Final constraint such that the system is correct:
tau2_D >= 5 + 2*tau1_C
& tau1_C >= 0
& 3 >= 2*tau1_C
OR
2 >= tau1_C
& 2*tau1_C > 3
& tau2_D >= 5 + 3*tau1_C
This good constraint is exact (sound and complete)
```

Cartography

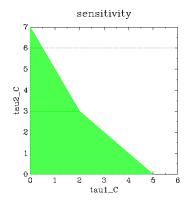
- Option cart generates a cartography between [0,xmax] and [0,ymax]
- Observe how response time grows linearly until $C_1 = 1.6$, then there is a jump

Models

Example 1: response time calculation

Example 2: Sensitivity on computation times

Example 3: Offsets


Sensitivity analysis for periodic tasks

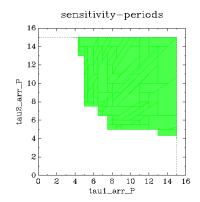
 Compute the schedulability region of the following a periodic tasks set task set

Task	С	Т
τ_1	??	8
$ au_2$??	12
$ au_3$	2	15
$ au_4$	3	18

- With CSA we can use the Hyperplane analysis
- With PTA:
 - sensitivity/sensitivity.txt and sensitivity/sensitivity.imi
 - Warning:
 - we use the idlesched model which stops the analysis at the first idle time (thanks to the critical instant theorem)
 - In this case the analysis time is extremely fast because of the short generated traces
 - If you use the sched model, the analysis takes > 5 minutes on my laptop

Cartography

Sensitivity on periods


For which values of T_1 and T_2 is the system schedulable ?

Task	С	Т
$ au_1$	2	??
$ au_2$	2	??
$ au_3$	2	15
$ au_4$	3	18

- With CSA, there exists a complex analysis for it¹
- With PTA:
 - sensitivity/sensitivity-periods.txt and sensitivity/sensitivity-periods.imi
- Warning
 - Here we are obliged to use idlesched otherwise the analysis does not converge!

¹E. Bini, M. Di Natale, G. C. Buttazzo, *Sensitivity Analysis for Fixed-Priority Real-Time Systems*, Real-Time Systems 39 (1-3), pp. 5-30, August 2008.

Cartography

Period as a parameter

- Unfortunately, when periods are used as parameters, the analysis in general does not converge
- Reason:
 - the schedule has not a specified lenght
 - the analysis keeps producing longer and longer traces, without finding any fixed point
- (Partial) solution:
 - stop the analysis as soon as we are sure the system is schedulable
- In the case of sporadic tasks (or synchronous periodic tasks)
 - stop at the first idle time

Models

Example 1: response time calculation

Example 2: Sensitivity on computation times

Example 3: Offsets

Response time with offsets

Compute the response time of all tasks in the following system

Task	С	Т	Off
$ au_1$	3	10	1
$ au_2$	4	12	4
$ au_3$	6	18	0

- With CSA, we have to look at the hyperperiod
- With PTA
 - Use D_i as parameters
 - See files offsets/offsets.txt and offsets/offsets.imi
 - Output:

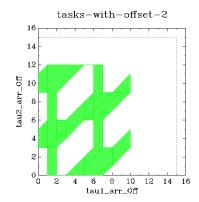
```
Final constraint such that the system is correct:

tau2_D >= 7

& tau1_D >= 3

& tau3_D >= 18

This good constraint is exact (sound and complete)
```


Find optimal offsets

For which values of the offsets this system is schedulable?

Task	С	Т	Off
$ au_1$	2	10	??
$ au_2$	5	12	??
$ au_3$	5	20	0

- Not possible in CSA (only possibility: exhaustive enumeration)
- With PTA:
 - offsets/tasks-with-offset-2.txt and offsets/tasks-with-offset-2.imi
- Here we are obliged to analyse the entire schedule (so we must use the sched)
 - analysis time : 102 secs on my laptop

Cartography

Models

Example 1: response time calculation

Example 2: Sensitivity on computation times

Example 3: Offsets

Complexity

- Depending on the model, analysis can take some time
- Complexity depends on
 - number of clocks (consider 2 or 3 clocks per task)
 - number of parameters
 - lenght of the traces
- Hints:
 - Whenever possible use the critical instant theorem to shorten the lenght of the traces
 - periodic synchronous (no offsets), sporadic
 - Not possible for offset based tasks
 - Avoid sporadic tasks when possible
 - Avoid arbitrary deadlines (greater than period)

Extensions

- Work is under way to
 - further optimize the standard task model
 - generate models for other schedulers (EDF, and non preemptive versions of FP and EDF)
 - Generate precedence between tasks