
IMITATOR User Manual

Version 3.3 (Cheese Caramel au beurre salé)

July 21, 2022

www.imitator.fr

https://www.imitator.fr/

Contents

Table of contents . 4

1 Introduction 5

2 A brief introduction to the syntax 6
2.1 Generalities . 6
2.2 Model syntax . 6
2.3 Property syntax . 12

3 IMITATOR Parametric Timed Automata 14
3.1 Formal definition . 14

3.1.1 Clocks, parameters . 14
3.1.2 Discrete rational variables . 14
3.1.3 Linear constraints . 15
3.1.4 Arithmetic expressions . 15
3.1.5 IMITATOR Parametric Timed Automata 15
3.1.6 Networks of IMITATOR Parametric Timed Automata 18

3.2 Initial state and initialization of variables . 19
3.3 Synchronization model . 19
3.4 Global constants . 20
3.5 Discrete variables . 20

3.5.1 Types . 20
3.5.2 Default initial value . 30
3.5.3 Updates . 30
3.5.4 Runtime errors . 34

4 Parameter synthesis using IMITATOR 36
4.1 Synthesis and emptiness . 36
4.2 Reachability . 36
4.3 Safety . 37
4.4 EF-minimization . 38
4.5 EF-maximization . 38
4.6 EF with minimal time reachability . 38
4.7 Parameter synthesis using patterns . 38
4.8 Parametric deadlock-freeness checking . 39
4.9 Parametric cycle synthesis . 40

4.9.1 Accepting cycle synthesis . 40

2

IMITATOR user manual

4.9.2 Accepting cycle with generalized acceptance condition (BFS) 41
4.9.3 Any cycle synthesis . 42

4.10 Parametric non-Zeno cycle synthesis . 42
4.11 Inverse method: Trace preservation and robustness 43
4.12 Behavioral cartography . 44
4.13 Parametric reachability preservation . 45
4.14 Summary . 46
4.15 Symbolic state space computation . 46

5 Understanding the IMITATOR result 48
5.1 Header . 48
5.2 The resulting constraint . 48
5.3 The cartography result . 49
5.4 General statistics . 49
5.5 Projection onto some parameters . 49

6 Graphical output and translation 50
6.1 State space . 50
6.2 Visualizing the synthesized constraint in 2D . 51
6.3 Translation to UPPAAL . 51
6.4 Translation to HYTECH . 54
6.5 Translation to JANI . 55
6.6 Export to graphics . 56
6.7 Export to LATEX . 57

7 Inside the box 58
7.1 Language and libraries . 58
7.2 Symbolic states . 58
7.3 Type system . 59

7.3.1 Type checking . 59
7.3.2 Expression type solving . 59
7.3.3 Literal number type inference . 60
7.3.4 Type conversion . 60

7.4 Installation . 60

8 List of options 61

9 Grammar 70
9.1 Variable names . 70
9.2 Grammar of the model . 70

9.2.1 Automata descriptions . 70
9.2.2 Initial state . 78

9.3 Grammar of the property file . 79
9.4 Reserved words . 83

3

IMITATOR user manual

10 Missing features 85
10.1 ASAP transitions . 85
10.2 Parameterized models . 85
10.3 Other synchronization models . 85
10.4 Initial intervals for discrete variables . 86
10.5 Complex updates for discrete variables . 86
10.6 Synthesis for L/U-PTA . 86

11 Acknowledgments 87

12 Licensing and credits 88

References 91

4

Chapter 1

Introduction

IMITATOR is a tool to perform automated parameter synthesis for concurrent timed sys-
tems [And21]. IMITATOR takes as input a network of IMITATOR parametric timed automata
(NIPTA): NIPTA are an extension of parametric timed automata [AHV93], a formalism to spec-
ify and verify models of systems where timing constants can be replaced with parameters, i.e.,
unknown constants.

IMITATOR addresses several variants of the following problem: “given a concurrent
timed system, what are the values of the timing constants that guarantee that the model
of the system satisfies some property?” Among other algorithms, IMITATOR implements
parametric safety and reachability analysis [AHV93; JLR15], parametric liveness synthesis
(with Büchi conditions) [NPV18; And+21], parametric deadlock-freeness synthesis [And16],
robustness analysis (also known as the inverse method) [And+09; ALM20], the behavioral car-
tography [AF10], and parametric reachability preservation [And+15]. Some algorithms can
also run distributed on a cluster. Numerous analysis options are available.

IMITATOR is a command-line only tool, but that can output results in graphical form.
IMITATOR was able to verify numerous case studies from the literature and from the

industry, such as communication protocols, hardware asynchronous circuits, schedulability
problems and various other systems such as models of coffee machines (probably the most
critical systems from a researcher point of view). Numerous benchmarks are available at
IMITATORWeb page [IMI-Web]. An official benchmarks library is available at [AMP21].

IMITATOR is free and open source software.
In this document, we present the input syntax, we formally define the input model of

IMITATOR, and we explain how to perform various analyses using the numerous options.

Keywords: formal verification, model checking, software verification, parametric timed au-
tomata, parameter synthesis

5

Chapter 2

A brief introduction to the syntax

We first briefly introduce the syntax using a simple example for readers familiar with para-
metric timed automata, and not interested in subtle details (such as the synchronization
model). A formal (and nearly exhaustive) definition of IMITATOR parametric timed au-
tomata (NIPTA) can be found in Chapter 3. The complete syntax is given in Chapter 9.

2.1 Generalities

IMITATOR performs parametric verification of models specified using networks of
IMITATOR parametric timed automata (hereafter NIPTA). An IMITATOR parametric timed
automaton (hereafter IPTA) is a variant of parametric automata (as introduced in [AHV93]).
IPTA and NIPTA are formalized in Section 3.1.

The input syntax of IMITATOR is originally based on the syntax of HYTECH [HHW95],
with several improvements. Still nowadays, the syntax of HYTECH (and PHAVerLite, reusing
itself in part the HYTECH) models is remarkably close to IMITATOR.

Comments are OCaml-like comments starting with (* and ending with *). As in OCaml,
comments can be nested.

The Fischer mutual exclusion protocol We use as a motivating example one timed version
of the Fischer mutual exclusion protocol, coming from the PAT model checker [Sun+09]. This
version of the protocol is neither the most complete, nor the most simple; we just use it here
to introduce various aspects of the IMITATOR input syntax.

Fischer mutual exclusion protocol is a protocol that guarantees the mutual exclusion of
several processes (here two) that want to access a shared resource (called the critical section).

2.2 Model syntax

We give below this model using the IMITATOR syntax. This model is given in graphical form
in Fig. 2.1.1

1This LATEX representation, that makes use of the LATEX TikZ library, was automatically output by IMITATOR,
using option -imi2TikZ, followed by some manual positioning optimization.

6

IMITATOR user manual

1(*
2* IMITATOR MODEL
3*
4* Fischer ’ s mutual exclusion protocol
5*
6* Description : Fischer ’ s mutual exclusion protocol with 2 processes
7* Correctness : Not 2 processes together in the c r i t i c a l section (location

obs_violation unreachable)
8* Source : PAT l i b r a r y of benchmarks
9* Author : ?
10* Input by : Étienne André
11*
12* Created : 2012/10/08
13* Last modified : 2021/10/14
14*
15* IMITATOR version : 3.2
16*)
17

18var
19x1 , (* proc1 ’ s clock *)
20x2 , (* proc2 ’ s clock *)
21: clock ;
22

23turn ,
24counter
25: int ;
26

27delta ,
28gamma
29: parameter ;
30

31IDLE = −1
32: int ;
33

34(*)
35automaton proc1
36(*)
37synclabs : access_1 , enter_1 , exit_1 , no_access_1 , try_1 , update_1 ;
38

39loc id le1 : invariant True
40when turn = IDLE sync try_1 do { x1 := 0} goto active1 ;
41

42loc active1 : invariant x1 <= delta
43when True sync update_1 do { turn := 1 , x1 := 0} goto check1 ;
44

45loc check1 : invariant True
46when x1 >= gamma & turn = 1 sync access_1 do { x1 := 0} goto access1 ;
47when x1 >= gamma & turn <> 1 sync no_access_1 do { x1 := 0} goto id le1 ;
48

49loc access1 : invariant True
50when True sync enter_1 do { counter := counter + 1} goto CS1 ;
51

52loc CS1 : invariant True
53when True sync exi t_1 do { counter := counter − 1 , turn := IDLE , x1 := 0} goto id le1 ;
54

7

IMITATOR user manual

55end (* proc1 *)
56

57

58(*)
59automaton proc2
60(*)
61synclabs : access_2 , enter_2 , exit_2 , no_access_2 , try_2 , update_2 ;
62

63loc id le2 : invariant True
64when turn = IDLE sync try_2 do { x2 := 0} goto active2 ;
65

66loc active2 : invariant x2 <= delta
67when True sync update_2 do { turn := 2 , x2 := 0} goto check2 ;
68

69loc check2 : invariant True
70when x2 >= gamma & turn = 2 sync access_2 do { x2 := 0} goto access2 ;
71when x2 >= gamma & turn <> 2 sync no_access_2 do { x2 := 0} goto id le2 ;
72

73loc access2 : invariant True
74when True sync enter_2 do { counter := counter + 1} goto CS2 ;
75

76loc CS2 : invariant True
77when True sync exi t_2 do { counter := counter − 1 , turn := IDLE , x2 := 0} goto id le2 ;
78

79end (* proc2 *)
80

81

82(*)
83automaton observer
84(*)
85synclabs : enter_1 , enter_2 , exit_1 , exi t_2 ;
86

87loc obs_waiting : invariant True
88when True sync enter_1 goto obs_1 ;
89when True sync enter_2 goto obs_2 ;
90

91loc obs_1 : invariant True
92when True sync exi t_1 goto obs_waiting ;
93when True sync enter_2 goto obs_violation ;
94

95loc obs_2 : invariant True
96when True sync exi t_2 goto obs_waiting ;
97when True sync enter_1 goto obs_violation ;
98

99(* NOTE: no outgoing action to reduce s t a t e space *)
100loc obs_violation : invariant True
101

102end (* observer *)
103

104

105(*)
106(* I n i t i a l s t a t e *)
107(*)
108

109i n i t := {
110

8

IMITATOR user manual

111

112discrete =
113(*−−*)
114(* I n i t i a l location *)
115(*−−*)
116loc [proc1] := idle1 ,
117loc [proc2] := idle2 ,
118loc [observer] := obs_waiting ,
119(*−−*)
120(* I n i t i a l di screte assignments *)
121(*−−*)
122turn := IDLE ,
123counter := 0
124;
125

126continuous =
127(*−−*)
128(* I n i t i a l clock constraints *)
129(*−−*)
130& x1 >= 0
131& x2 >= 0
132

133(*−−*)
134(* Parameter constraints *)
135(*−−*)
136& delta >= 0
137& gamma >= 0
138;
139

140}
141

142

143(*)
144(* The end *)
145(*)
146end

Header Let us comment this case model by starting with the header. First, text in com-
ments gives generalities about the model (author, date, description, etc.). The form is not
normalized, but it could be in the future, so it is strongly advised to follow this form.2

Variable declarations The variable declarations starts with keyword var.
This model contains two clocks: x1 is process 1’s clock, and x2 is process 2’s clock.
This model contains two parameters: delta is the parametric duration specifying how

long a process is idle at most, whereas gamma is the parametric duration specifying the min-
imum duration between the time a process checks for the availability of the critical section
and the time the same process indeed enters the critical section (if it is still available).

2An empty model template with all these comments ready to be filled out (containing also a sample IPTA and
its initial definitions) is available at:
https://github.com/imitator-model-checker/imitator/blob/master/benchmarks/template.imi.

9

https://github.com/imitator-model-checker/imitator/blob/master/benchmarks/template.imi

IMITATOR user manual

Two integer-valued variables (i.e., global, discrete variables, see Section 3.5) are used:
turn checks which process is attempting to enter the critical section; counter records how
many processes are in the critical section (this variable will not be used for the verification,
but was used in the original PAT model, and we choose to keep it).

Finally, a global constant IDLE is set to -1 (just as in the original PAT model), and encodes
that no process is attempting to enter the critical section.

Automata This model contains three IPTA: the first and second ones (proc1 and proc2)
model the first and second process, respectively. The third one (observer) is an observer,
i.e., an IPTA that checks the system behavior without modifying it.

The first process Let us first describe the IPTA proc1 (a graphical representation is given in
Fig. 2.1a). This IPTA uses six actions, given in the synclabs declaration.

proc1 is initially in location idle1, with no invariant (depicted by invariant True). At
any time, when the discrete variable turn is equal to IDLE, then this IPTA may synchronize
on action try_1, reset its clock x1, and enter location active1.

The invariant of this location is x1 <= delta, i.e., proc1 can only remain in active1 as
long as the value of x1 does not exceed delta. At any time, this IPTA may synchronize on
action update_1, reset its clock x1 and set the global variable turn to 1, and enter location
check1.

In location check1, the process wait at least gamma time units (modeled by the inequality
x1 >= gamma, in all outgoing transitions). If turn is still equal to 1 (that is, no other process
attempted in the meanwhile to enter the critical section), then process 1 is indeed ready to
enter the critical section, by synchronizing access_1 and resetting x1. If turn is different
from 1 (that is, another process attempted in the meanwhile to enter the critical section, and
it is not safe for process 1 to enter), then process 1 returns to its idle location, by synchronizing
no_access_1 and resetting x1.

In location access1, process 1 can remain any time, and eventually enters the critical
section by synchronizing enter_1 and incrementing the global variable counter by 1.

In location CS1, process 1 can remain any time, and eventually leaves it, by decrementing
the global variable counter by 1, and setting the global variable turn to its initial value IDLE.

The second process Process 2 is identical to process 1, except that x1 is replaced with x2,
and that the value of turn becomes 2.

The observer The observer is in charge to check that no more than one process is in critical
section at the same time.3 This observer will detect that this situation happens if an action
enter_1 is followed by an action enter_2 without an action exit_1 in between (or symmet-
rically if an action enter_2 is followed by an action enter_1 without an action exit_2 in

3This observer is not really necessary to check the correctness of this protocol; instead of adding this observer
and checking unreachable loc[observer] = obs_violation, one could just check either counter > 1 or
loc[proc1] = CS1 & loc[proc2] = CS2. However, this example comes from an earlier version of IMITATOR
(that did not support checking global variables or more that one location in the unreachable property — which
has been fixed since IMITATOR 2.7); furthermore, introducing an observer is also useful, as it is often used for
the verification of more complex properties (see, e.g., [ABL98; Ace+98]).

10

IMITATOR user manual

idle1

active1x1 ≤ delta

check1

access1 CS1

turn = IDLE
try_1

x1 := 0

update_1
x1 := 0

turn := 1
x1 ≥ gamma

∧ turn = 1
access_1

x1 := 0

turn 6= 1
∧ x1 ≥ gamma

no_access_1
x1 := 0

enter_1
counter := counter+1

exit_1
x1 := 0

counter := counter−1
turn := IDLE

(a) Process 1
obs_waiting

obs_1 obs_2

obs_violation

enter_1

enter_2

exit_1

enter_2

exit_2

enter_1

(b) PTA observer

Figure 2.1: Fischer mutual exclusion protocol (graphical NIPTA)

11

IMITATOR user manual

between). Note that the observer simply observes the system state, and synchronizes on the
actions used by proc1 and proc2; it does not use any clock nor variable.

A graphical representation of the IPTA observer is given in Fig. 2.1b.

Initial state definition The initial state is defined by the part of the file following init :=.
Since IMITATOR 3.1, the initial definition section is split between the discrete initial-

ization and the continuous initialization (the latter being given in the form of a set of con-
straints).

The discrete initialization (introduced by the discrete keyword) assigns an initial value
to each discrete (global) variable, and sets the initial location for each automaton. Note that
the assignment operator := is used (in contrast with unification operator = used for con-
straints). For example, loc[proc1] := idle1 states that proc1 is initially in location idle1.
The initial definition should assign a constant value to each discrete variable: here turn is
initially assigned to IDLE, and counter is initially assigned to 0.

The continuous initialization (introduced by the continuous keyword) defines the ini-
tial constraints over clocks and parameters (possibly also using discrete variables). The ini-
tial definition may (only may, see Section 3.2) give an initial value to the clocks, for example
requiring them to be equal to some constant (typically 0). In our example, clocks are only
bound to be greater or equal to 0. Finally, in this example, parameters are bound to be non-
negative as well. Note that the initial definition can introduce more complex constraints over
clocks, parameters and discrete variables; see Section 3.2 for details.

2.3 Property syntax

Property specification For this model, the correctness property is that two processes can-
not be in the critical section at the same time; as explained above, this is equivalent to the
fact that the obs_violation location of the observer IPTA is unreachable. This is input in
the property as follows:

property := #synth AGnot(loc[observer] = obs_violation);

Here, AGnot stands for safety. More elaborate properties are detailed in Section 4.7.
We give below the whole property file:

(* ***
* IMITATOR MODEL
*
* Fischer 's mutual exclusion protocol
*
* Description : Fischer 's mutual exclusion protocol with 2 processes
* Correctness : Not 2 processes together in the critical section (location

obs_violation unreachable)
* Source : PAT library of benchmarks
* Author : ?
* Input by : Étienne André
*
* Created : 2012/10/08
* Last modified : 2020/04/03
*
* IMITATOR version: 3
*** *)

12

IMITATOR user manual

property := #synth AGnot(loc[observer] = obs_violation);

Parameter synthesis Finally, let us run IMITATOR on this case study. Quite naturally, what
we would be interested in is knowing for which parameter valuations this protocol is correct,
i.e., no more than one process can be present in the critical section at one time. Assuming
this model is input in file fischer.imi and the property is in file fischer.imiprop, the
command calling IMITATOR is as follows:

imitator fischer.imi fischer.imiprop

The result of the call to IMITATOR is

Final positive constraint guaranteeing safety:

delta >= 0

& gamma > delta

This positive constraint is exact (sound and complete)

That is, the system is safe if O <= delta < gamma, which is the well-known constraint
ensuring mutual exclusion for this protocol.

13

Chapter 3

IMITATOR Parametric Timed
Automata

This chapter formally introduces the input model of IMITATOR.

3.1 Formal definition

IMITATOR performs parametric verification of models specified using networks of
IMITATOR parametric timed automata (hereafter NIPTA).

An IMITATOR parametric timed automaton (hereafter IPTA) is a variant of parametric
automata (as introduced in [AHV93]). IPTA augment the expressiveness of PTA from [AHV93]
with several features such as invariants, discrete variables which can be simple (e.g., integer,
rational, Boolean variables) or more complex (lists, arrays. . .), complex guards and invariants
(i.e., not only comparing a single clock to a single parameter), stopwatches (i.e., the ability to
stop some clocks in some locations), multi-rate clocks (i.e., the speed of a clock is not neces-
sarily 1, and can be defined to any rational) and arbitrary clock updates (i.e., not necessarily
to 0, but also to rationals, other clock valuations or even parameters).

3.1.1 Clocks, parameters

Clocks are real-valued variables. A set of clocks is X = {x1, . . . , xH }; a clock valuation is w : X →
R≥0. By default, all clocks are evolving at the same rate (1), but this rate can be defined to any
rational value in IMITATOR. Clocks can also be stopped in IMITATOR, i.e., their rate can be
zero.

Parameters are rational-valued variables, that act as unknown constants. A set of param-
eters is P = {p1, . . . , pM }; a parameter valuation is a function v : P →Q. We will often identify
a valuation v with the point (v(p1), . . . , v(pM)).

3.1.2 Discrete rational variables

IMITATOR features discrete variables. Discrete variables1 are global variables. Their value
is global, in the sense that they are shared by all IPTA of the model. They can be seen as

1The name “discrete variable” comes from HYTECH.

14

IMITATOR user manual

syntactic sugar to represent a possibly unbounded number of locations.
We only describe here rational-valued variables. Rational-valued variables are the only

ones to be compared directly to clocks or parameters in IMITATOR. Further types of discrete
variables (e.g., integers, Booleans, arrays. . .) will be described in Section 3.5. These latter
types cannot be directly compared to clocks or parameters.

In IMITATOR, rationals are exact and unbounded, just as in maths (i.e., they are not rep-
resented using a limited number of bits, such as 32 or 64 bits). Rational variables are encoded
in IMITATOR as exact rational arithmetics, thanks to the GNU Multiple Precision Arithmetic
(GMP) library. Therefore, neither floating-point approximation, nor overflow, can occur;
and the representation of the constraints is always exact. Note that floating-point numbers
(“float”) are totally absent from the IMITATOR implementation (except for the generation of
graphical outputs).

In the following, we define the set of rational variables as R = {r1, . . . ,r J }; a rational variable
valuation is a function ρ : R →Q.

3.1.3 Linear constraints

Let us formalize the set of linear constraints allowed in IMITATOR. Given a set of vari-
ables Var = {z1, . . . ,zN } (in the following, this set will be instantiated with X and/or P and/or
R), a linear term over Var is an expression of the form∑

1≤i≤n
αi zi +d

for some n ∈N, where zi ∈ Var, αi ∈Q, for 1 ≤ i ≤ n, and d ∈Q.
An atomic constraint over Var is an expression of the form lt ./ 0 where lt is a linear term

over Var, and ./ ∈ {<,≤,=,≥,>}.
A constraint over Var is a conjunction of atomic constraints. We denote by LT (Var) the

set of linear terms over Var, and by LC (Var) the set of constraints over Var. In IMITATOR, we
will consider constraints belonging to sets such as LC (X ∪P) (i.e., the set of constraints over
clocks and parameters), or LC (X ∪P ∪R) (i.e., the set of constraints over clocks, parameters
and discrete rational-valued variables).

3.1.4 Arithmetic expressions

Let A E (R) denote the set of arithmetic expressions over the numerical discrete rational vari-
ables, i.e., made of addition, subtraction, multiplication, and division over rational (or inte-
ger) constants and discrete numerical variables.

3.1.5 IMITATOR Parametric Timed Automata

We can now give a formal definition of IPTA.

Remark 3.1. In the subsequent formal definition, we use for discrete variables the sole
set of rational-valued variables instead of other types (int-valued variables, Boolean
variables and binary words, lists, arrays, etc.), for sake of simplicity. These more com-
plex types can be used in a straightforward manner. That is, guards (and invariants)

15

IMITATOR user manual

can also include operations on such variables. See the section dedicated to discrete
variables (Section 3.5) and the grammar in Chapter 9 for the exact behavior allowed by
IMITATOR.

Let ε denote the unobservable action.

Definition 3.1 (IPTA). An IMITATOR parametric timed automaton (IPTA) is a tuple A =
〈Σ,L,`init,R, X ,P, I ,flow,→〉, where:

• Σ is a finite set of actions;

• L is a finite set of locations;

• `init ∈ L is the initial location;

• R is a set of rational-valued variables;

• X is a set of clocks;

• P is a set of parameters;

• I : L → LC (X ∪P ∪R) assigns to every location ` a constraint over all variables,
called the invariant of `;

• flow : L × X →Q assigns to a every location and clock a given flow (or speed), i.e.,
a rational number;

• → is a set of edges (`, g , a, Xup,Dup,`′), where `,`′ ∈ L are the source and des-
tination locations, g ∈ LC (X ∪ P ∪ R) is a constraint over all variables (called
guard of the transition), a ∈ Σ∪ {ε} is the action associated with the transition,
Xup : X *LT (X ∪P ∪R) is the (possibly partial) update function for clocks, and
Dup : R * A E (R) is the (possibly partial) update function for discrete rational
variables.

In the following, we explain this definition.

Guards and invariants Guards and invariants in IMITATOR are linear constraints over all
variables. For example, the following expression can be used in a guard or an invariant:

1r1 + .5 x1 + 3 x2 >= 2 p1 - r2 & p2 < 1/3

where r1, r2 are discrete rational variables, x1, x2 are clocks and p1, p2 are parameters.
This syntax includes in particular diagonal constraints (e.g., x1 - x2 <= 2), not always sup-
ported in other model-checking tools.

Actions Transitions can be synchronized on an action in Σ, or have no synchronized action
(“ε”), which is often referred to in the literature as a silent transition, or an ε-transition. For
the semantics of the synchronization model between various IPTA, refer to Section 3.3. A
non-silent transition is said to be observable; and it can be synchronized with other automata.

16

IMITATOR user manual

Clock updates Observe that clocks can be updated to any value, i.e., a clock can be assigned
not only to 0, but to any linear term over the other clocks, the parameters and the discrete ra-
tional variables. This considerably extends the traditional syntax of PTAs defined in [AHV93].
In fact, the IMITATOR includes (more than just) the updatable timed automata of [Bou+04],
as well as the reset-to-parameter (parametric) timed automata of [ALR18b]. If clocks are al-
ways reset to constants (i.e., not assigned to more complex linear terms), IMITATORwill ap-
ply some optimizations that (may) increase the analysis speed.

Discrete updates Discrete variables can be assigned to expressions compatible with their
type. Notably, rational variables can be assigned to rational arithmetic expressions over R.
On the one hand, this is more restrictive than clock updates, because discrete rational vari-
ables cannot be assigned to a clock or to a parameter (in contrast to clocks, that can be as-
signed to linear expressions over clocks, parameters and discrete rational variables). On the
other hand, arithmetic expressions are richer than linear constraints, as they notably allow
multiplication or division of rational variables with each other.

Since IMITATOR 2.12, if-then-else conditions are allowed in discrete updates. In ad-
dition, while by default updates are not sequential in IMITATOR, we also allow sequential
updates since IMITATOR 3.3. See Section 3.5.3 for details on updates.

Finally note that, by definition, parameters (that are unknown timing constants) cannot
be updated.

Flows and stopwatches By default, all clocks evolve at the same rate in all locations, and
this rate is 1. That is, by default, ∀` ∈ L,∀x ∈ X : flow(`, x) = 1.

However, one can explicitly define an alternative (constant, rational-valued) flow using
two methods:

Using stopwatches A stopwatch [CL00] is a clock whose elapsing is stopped in some lo-
cations, i.e., flow(`, x) = 0. There is no distinction between clocks and stopwatches.
That is, any clock can potentially be stopped in some location. IMITATOR will de-
tect whether a model has or not stopwatches; if there is no stopwatch in the model,
IMITATORwill apply some optimizations that (may) increase the analysis speed.

Clocks can be stopped in locations, thanks to the optional stop { ... } keyword
(see grammar in Section 9.2). A clock is stopped in a location if it belongs to the list of
clocks in stop { ... }. It is resumed when leaving the location—unless the target
location again stops this clock.

Using explicit flows IMITATOR also support constant flows, i.e., multi-rate (parametric)
timed automata [Alu+95]. That is, it is possible to specify the speed of a clock in a
location. This value is an arbitrary rational number, including 0 (in which case it is
equivalent to a stopwatch [CL00]) or a negative number. This can be specified using a
syntax of the following form: flow {x' = 2}. A clock for which no flow is explicitly
defined has of course flow 1. A stopwatch has flow 0.

17

IMITATOR user manual

Remark 3.2. It is possible to defined ill-formed models where contradictory flows are
defined for a given clock. For example, in

stop { x } flow {x' = 2, y' = 0}

x is assigned both flow 0 (because it is defined as a stopped clock) and 2 (in the explicit
flow definition).

Alternatively, in an NIPTA, it is possible to be in a global location such that, in one
location of one of the automata a given clock is assigned a given flow, and in another
location of another automata in parallel, the same clock is assigned another flow.

In the case of such contradictory flows, IMITATORwill trigger a warning on-the-fly,
and the result of the analysis is unspecified.

Urgent locations A location can be defined as urgent, using the keyword urgent (see gram-
mar in Section 9.2). In an urgent location, time cannot elapse, i.e., it must be left in 0-time.
Note however that “in 0-time” does not necessarily mean immediately: that is, several actions
may be performed (in 0-time) before the location is left.

3.1.6 Networks of IMITATOR Parametric Timed Automata

Definition 3.2 (NIPTA). Given a set of IPTA Ai = 〈Σi ,Li , (`init)i ,Ri , Xi ,Pi , Ii ,flowi ,→i 〉,
1 ≤ i ≤ N for some N ∈ N, a network of IPTA (NIPTA) is a tuple 〈Σ,R, X ,P, {Ai | 1 ≤ i ≤
N },Cinit〉, where:

• Σ=⋃
1≤i≤N Σi is the set of all actions;

• R =⋃
1≤i≤N Ri is the set of all discrete rational variables;

• X =⋃
1≤i≤N Xi is the set of all clocks;

• P =⋃
1≤i≤N Pi is the set of all parameters;

• Cinit ∈LC (X ∪P ∪R) is the initial constraint over R, X and P .

Observe that each set of actions, discrete variables, clocks and parameters is not disjoint
between all IPTA. That is, actions, discrete variables, clocks and parameters may be shared
between different IPTA. If a variable is required to be local to an IPTA, then it should just not
be used in any other IPTA of the model.

Different from many tools for (parametric) timed automata, clocks are not necessarily
initially equal to 0 (this is similar to HYTECH [HHW95] but different from UPPAAL [LPY97]).
The initial value of the clocks is defined by Cinit (see Section 3.2). If nothing is defined in Cinit,
then their value is supposed to be arbitrary (any real value).

In an NIPTA, a clock x is stopped in a location (`1, . . . ,`N) if it stopped in at least one of
the locations `i , i.e., x ∈ flowi (`i) = 0 for some i ∈ {1, . . . , N }.

Note that parameters are not assumed to be positive; however, the behavior of IMITATOR
has not been tested for negative parameters, and it is strongly advised to constrain them to
be non-negative in Cinit (if it is not the case, a warning is issued by IMITATOR).

18

IMITATOR user manual

Finally, note that the number of IPTA, locations, variables and actions that can be defined
in a model is bounded in IMITATOR by some very large number (most probably 232); but,
well, you don’t seriously plan to build such a large model, do you?

Determinism IMITATOR may use the determinism in (yet to come) algorithms; and the
deterministic nature of an NIPTA is detected by IMITATOR. In our setting, the strong deter-
minism denotes at most one transition going out from a location and labeled with a given
observable (i.e., non-silent) transition. Let us precisely define what it means:

Definition 3.3 (strong determinism). Let A be an NIPTA made of N IPTA Ai =
〈Σi ,Li , (`init)i ,Ri , Xi ,Pi , Ii ,flowi ,→i 〉, 1 ≤ i ≤ N for some N ∈N.

A is strongly-deterministic if for all automaton Ai , for all location `i ∈ Li , for all
observable action a ∈Σi , there exists at most one transition from `i labeled with a.

Note that an existing weaker notion of determinism allows multiple transitions from the
same `i labeled with the same action a, as long as guards are mutually exclusive. This is not
the approach we choose in IMITATOR, where we impose at most one transition labeled with
the same action.

Once more, the notion of strong determinism in IMITATOR is not used in any algorithm,
but its nature is “simply” detected (and part of the result file).

3.2 Initial state and initialization of variables

For each IPTA, a unique initial location must be defined.
For variables, the definition of the initial value is very permissive in IMITATOR. Clocks

are not necessarily equal to 0, and parameters are not even necessarily positive.
Parameters and clocks can be initially bound by any linear constraint over parameters,

clocks, and discrete variables. That is, we can define initial constraints such as:

1x1 + x2 <= 2 p1 + 0.5 p2 - i

However, discrete variables must be initialized to a constant compatible with their type.
See Section 3.5.2 for details. Given a discrete variable i, if the definition of the initial state
does not contain an equality of the form i := ... followed by a constant (or a linear term
over LT (R), for rational variables), then IMITATOR will assume that i is initially set to a
default value, and will issue a warning.

3.3 Synchronization model

By default, all IPTA of an IMITATORmodel declare their set of actions.2

The IMITATOR synchronization model is such that all IPTA declaring an action must
synchronize together on this action. This can be seen as a strong broadcast. That is, for a

2An alternative is an automatic recognition of the actions used, see option -sync-auto-detect in Chapter 8.

19

IMITATOR user manual

transition labeled with action act to be executed, all IPTA declaring act must be ready to
execute act locally. Otherwise, this transition cannot be taken (yet).

If an IPTA declares an action act that is never used in this IPTA, then action actwill never
be executed in the entire model.3

Also note that, when synchronizing transitions, the order in which the associated updates
are executed is described in Section 3.5.3.

3.4 Global constants

IMITATOR supports global constants, i.e., a variable the value of which is known once for all.
The syntax is the following one:

1c = 1: constant;

Then, any occurrence of c in the model is replaced with 1.
By default, constants are (unbounded, exact) rationals. It is possible to define constants

of another type by making their type explicit:

1c = 1: int;

In this case, c is a constant of type int.
Limited linear expressions over rationals can be used in the definition of a (rational) con-

stant; however no other constant can be used in a definition, i.e., one cannot (yet) write c1 =

c2 + 1: constant;.

Hint 3.1. In fact, a variable (e.g., a parameter) can be turned to a constant as follows in
the definition of the parameters:

1p = 2: parameter;

This is equivalent to replacing p with 2 everywhere in the model; this is particularly
useful when some parameters should be valuated. In contrast, if the parameter is valu-
ated in the initial state definition, IMITATOR still counts it as a parameter, which makes
all constraints suffer from an additional dimension.

3.5 Discrete variables

3.5.1 Types

Discrete, global variables are syntactic sugar for a potentially unbounded number of loca-
tions. Discrete variables can be tested in guards, and updated along transitions.

IMITATOR currently supports four primitive types of discrete variables:

1. rational-valued variables

2. “int”-valued variables (over 32 bits)

3In this case, IMITATOR will detect this situation and will entirely delete this action from the model, while
issuing a warning.

20

IMITATOR user manual

3. Boolean-valued variables

4. binary word variables, allowing to use bitwise binary operations.

In addition, more complex types such as arrays, lists, stacks and queues (of primitive
types, or of composite types such as arrays of lists) can be used.

We review in the following these various types, together with their associated built-in
functions.

3.5.1.1 Rational-valued variables

Rational variables are (exact, unbounded) rational-valued variables, and were described in
Section 3.1.2.

3.5.1.2 “Int”-valued variables

Int variables are bounded signed integer-valued variables encoded using 32 bits (which is
architecture independent).

Int variables are encoded in IMITATOR using the int type of OCaml.

Warning 1 (int encoding). All arithmetic operations over the “int” variables are taken
modulo 232. Overflow can therefore occur.

For critical models, it is highly advised to use rational variables instead (the com-
putation using rational variables may be significantly slower, but is always exact and
without overflow).

Formally, the set of integer variables is I = {i1, . . . , iK }; an integer variable valuation is a
function ı : I →Z∩ [−2,147,483,648,+2,147,483,647].

Arithmetic functions

• pow(x:'a number, e:int):'a with 'a number:[rational|int] - compute the
power of a (rational or integer) number

Example 3.1. To illustrate this operation, note that the following guard in the model
fragment below will evaluate to true:

1when pow(2, 3) = 8 goto l1;

2

Conversion functions

• rational_of_int(x:int):rational - convert an int number to a rational one

21

IMITATOR user manual

Example 3.2. To illustrate this operation, note that the following guard in the model
fragment below will evaluate to true:

1(* i : int *)

2(* r : rational *)

3when i = 2 & r = 2 & rational_of_int(i) = r goto l1;

4

Remark 3.3. Comparing natively (using a “cast”) an integer and a rational is not allowed.
That is, the following code is incorrect:

1when i = 2 & r = 2 & i = r goto l1; (* incorrect! *)

2

3.5.1.3 Boolean variables

IMITATOR also features Boolean-valued variables. The set of Boolean variables is B =
{b1, . . . ,bL}; a Boolean variable valuation is a function β : B →B, where B= {true, false}.

Example 3.3. To illustrate Boolean variables, note that the following guards in the
dummy model fragment below will all evaluate to true:

1

2(* Assume true_bool = True , another_true_bool = True *)

3(* Assume false_bool = False *)

4(* Assume i = 1 *)

5

6when True goto l1;

7when true_bool goto l1;

8when not(false_bool) goto l1;

9when (true_bool | i = 0) goto l1;

10when true_bool = another_true_bool & not(i = 5) goto l1;

11when true_bool <> false_bool goto l1;

12

13

3.5.1.4 Binary word variables

Binary word variables are sequences of bits of fixed length—the maximum size of a binary
word is 216. Bitwise operations can be defined on these variables (on same length).

For example, defining two binary words bw1 and bw2 both of size 4 (type : binary(4)),
such that initially bw1 := 0b1010 and bw2 := 0b1011, we can use a guard logor(bw1,

bw2) <> bw1 that checks whether the result of the bitwise (logical) “or” operation on both
variables differs from bw1. Then, if this check is true, one may want to shift the bits of b1
by 2 positions, and set bw2 to the result of the bitwise “and” operation on bw1 and bw2. A

22

IMITATOR user manual

transition featuring such a guard and such updates would be written as follows in IMITATOR
syntax:

1(* before: bw1 = 0b1010 and bw2 = 0b1011 *)

2when logor(bw1 , bw2) <> bw1 sync a do {bw1 := shift_left(bw1 , 2), bw2 :=

logand(bw1 , bw2)} goto l1;

3(* after: bw1 = 0b1000 and bw2 = 0b1010 *)

Note that binary words are of fixed length, and operations can only be applied to words
of the same length.

We denote by W the set of binary word variables.

Binary word functions

• shift_left(b:binary_word(l), i:int):binary_word(l) - shift a binary word of
length l to left

• shift_right(b:binary_word(l), i:int):binary_word(l) - shift a binary word of
length l to right

• fill_left(b:binary_word(l), i:const int):binary_word(l + i) - shift a bi-
nary word of length l to left (non destructive)

• fill_right(b:binary_word(l), i:const int):binary_word(l + i) - shift a bi-
nary word of length l to right (non destructive)

• logand(b1:binary_word(l), b2:binary_word(l)):binary_word(l) - apply AND
bitwise operation to two binary words of length l

• logor(b1:binary_word(l), b2:binary_word(l)):binary_word(l) - apply OR
bitwise operation to two binary words of length l

• logxor(b1:binary_word(l), b2:binary_word(l)):binary_word(l) - apply XOR
bitwise operation to two binary words of length l

• lognot(b:binary_word(l)):binary_word(l) - apply NOT bitwise operation to a bi-
nary word of length l

Example 3.4. To illustrate the binary words operations, note that all the following
guards in the model fragment below will evaluate to true:

1when shift_left(0b010110 , 3) = 0b110000 goto l1;

2when shift_right(0b010110 , 3) = 0b000010 goto l1;

3when fill_left(0b010110 , 3) = 0b010110000 goto l1;

4when fill_right(0b010110 , 3) = 0b000010110 goto l1;

5when logand(0b010110 , 0b101010) = 0b000010 goto l1;

6when logor(0b010110 , 0b101010) = 0b111110 goto l1;

7when logxor(0b010110 , 0b101010) = 0b111100 goto l1;

8when lognot(0b010110) = 0b101001 goto l1;

23

IMITATOR user manual

3.5.1.5 Arrays

Array variables are fixed-length collections of indexed elements. Array elements can be ac-
cessed or updated using an integer-valued arithmetic expression as index. An array variable
always has a fixed length and an underlying type, which can be any of the available types of
IMITATOR (including arrays, lists, stacks and queues). For example, it is possible to declare
an array of integers, or an array of Booleans, or an array of arrays of arrays of Booleans—which
can be seen as a multidimensional array.

Examples of array definitions are given below:

1my_const_rational_array = [1, 2, 3] : rational array (3)

2my_rational_array : rational array (5);

3my_int_array : int array (2);

4my_bool_array : bool array (3);

5my_binary_word_array : binary (4) array (2);

6my_2d_int_array : int array (2) array (2);

Array functions

• a[i:int]:'a with 'a:any - access to element of array a at index i

• array_append(a1:'a array(l1), a2:'a array(l2)):'a array(l1+l2) with
'a:any - concatenates an array of length l1 with an array of length l2, resulting in an
array of length l1 + l2

• array_length(a1:'a array(l1)):int=l1 with 'a:any - length of the array a1

• array_mem(a1:'a, l:'a array(l1)):bool with 'a:any - true if e is in the array a1

Example 3.5. To illustrate the arrays operations, note that the following guard in the
model fragment below will evaluate to true:

1when

2& my_const_rational_array [0] = 1

3& array_append ([1, 2, 3], [4, 5, 6]) = [1, 2, 3, 4, 5, 6]

4& array_append ([[1, 2]], [[3, 4]]) = [[1, 2], [3, 4]]

5& array_length ([20, 4, 6]) = 3

6& array_mem (2, [8, 6, 2])

7goto l1;

8

3.5.1.6 Lists

Lists are collections of variable length. Contrarily to arrays, the type of a list does not in-
clude its length; it is therefore possible to compare two lists of different lengths. List ele-
ments can only be accessed—not updated—using an integer-valued arithmetic expression
as index. A list variable always has an underlying type, which can be any of the available

24

IMITATOR user manual

types of IMITATOR (including arrays, lists, stacks and queues). For example, it is possible to
declare a list of integers, or a list of Booleans, or a list of lists of arrays of Booleans.

Examples of list definitions are given below:

1my_const_rational_list = list([1, 2, 3]) : rational list;

2my_rational_list : rational list;

3my_int_list : int list;

4my_bool_list : bool list;

5my_binary_word_list : binary (4) list;

6my_2d_int_list : int list list;

List functions

• l[i:int]:'a with 'a:any - access to element of list l at index i

• list_cons(e:'a, l:'a list):'a list with 'a:any - construct a list by inserting a
new element e at the beginning of l

• list_hd(l:'a list):'a with 'a:any - head element of a list l

• list_is_empty(l:'a list):bool with 'a:any - Check if the list l is empty

• list_length(l:'a list):int with 'a:any - length of the list l

• list_mem(e:'a, l:'a list):bool with 'a:any - true if e belongs to the list l

• list_rev(l:'a list):'a list with 'a:any - reverse the list l

• list_tl(l:'a list):'a list with 'a:any - tail of the list l

Example 3.6. To illustrate the lists operations, note that the following guard in the
model fragment below will evaluate to true:

1when

2& my_int_list [0] = 1

3& list_cons (1, list([2, 3])) = list([1, 2, 3])

4& list_hd(list ([3 ,4])) = 3

5& list_is_empty(list ([]))

6& list_length(list([1, 1, 1])) = 3

7& list_mem(2, list([8, 6, 2]))

8& list_rev(list([1, 2, 3])) = list([3, 2, 1])

9& list_tl(list([1, 2, 3])) = list([2, 3])

10goto l1;

11

25

IMITATOR user manual

3.5.1.7 Stacks

Stacks are LIFO collections (Last In First Out) of variable length. It is possible to compare two
stacks of different lengths. Stack elements can only be accessed—not updated—using pop
or top functions. A stack variable always has an underlying type, which can be any of the
available types of IMITATOR (including arrays, lists, stacks and queues). For example, it is
possible to declare a stack of integers, or a stack of Booleans, or a stack of arrays of lists of
binary words of length 5.

Remark 3.4. A literal stack value can only be an empty stack.

Examples of stack definitions are given below:

1my_const_rational_stack = stack () : rational stack; (* useless but

possible *)

2my_rational_stack : rational stack;

3my_int_stack : int stack;

4my_bool_stack : bool stack;

5my_binary_word_stack : binary (4) stack;

6my_int_liste_stack : int list stack;

Stack functions

• stack_push(e:'a, s:'a stack) with 'a:any - Add an element e at the top of the
stack s and return the stack—the stack is modified, this function is subject to side-
effects

• stack_pop(s:'a stack):'a with 'a:any - Get and remove the element at the top of
the stack s—the stack is modified, this function is subject to side-effects

• stack_top(s:'a stack):'a with 'a:any - Get the element at the top of stack s—the
stack is left unchanged

• stack_clear(s:'a stack) with 'a:any - Remove all elements of the stack s and re-
turn the stack—the stack is modified, this function is subject to side-effects

• stack_is_empty(s:'a stack):bool with 'a:any - Check if the stack s is empty

• stack_length(s:'a stack):int with 'a:any - Get the number of elements in the
stack s

Example 3.7. The following code fragment illustrates some possibilities offered by the
stacks operations:

1loc l0: invariant True

2when

3& True

4do {

5seq

6stack_push (1, s);

26

IMITATOR user manual

7stack_push (2, s);

8i := stack_top(s);

9j := stack_pop(s);

10}

11goto l1;

12

13loc l1: invariant

14i = j

15& i = 2

16& stack_length(s) = 1

17& not(stack_is_empty(s))

18when

19& True

20do {

21seq

22stack_clear(s);

23}

24goto l2;

25

26loc l2: invariant stack_is_empty(s)

27

28

The seq keyword denotes a sequential update (see Section 3.5.3.3). Side-effect func-
tions can only be used in such sequential updates.

3.5.1.8 Queues

Queues are FIFO collections (First In First Out) of variable length. It is possible to compare
two queues of different lengths. Queue elements can only be accessed—not updated—using
pop or top functions. A queue variable always has an underlying type, which can be any of
the available types of IMITATOR (including arrays, lists, stacks and queues). For example, it
is possible to declare a queue of integers, a queue of Booleans, or a queue of stacks of binary
words of length 3.

Remark 3.5. A literal queue value can only be an empty queue.

Examples of queue definitions are given below:

1my_const_rational_queue = queue () : rational queue; (* useless but

possible *)

2my_rational_queue : rational queue;

3my_int_queue : int queue;

4my_bool_queue : bool queue;

5my_binary_word_queue : binary (4) queue;

6my_int_list_queue : int list queue;

Queue functions

• queue_push(e:'a, q:'a queue) with 'a:any - Add an element e at the beginning of
the queue q and return the queue—the queue is modified, this function is subject to
side-effects

27

IMITATOR user manual

• queue_pop(q:'a queue):'a with 'a:any - Get and remove the last element of the
queue q—the queue is modified, this function is subject to side-effects

• queue_top(q:'a queue):'a with 'a:any - Get the last element of the queue q—the
queue is left unmodified

• queue_clear(q:'a queue) with 'a:any - Remove all elements of the queue q and
return the queue—the queue is modified, this function is subject to side-effects

• queue_is_empty(q:'a queue):bool with 'a:any - Check if the queue q is empty

• queue_length(q:'a queue):int with 'a:any - Get the number of elements in the
queue q

Example 3.8. The following code fragment illustrates some possibilities offered by the
queues operations:

1loc l0: invariant True

2when

3& True

4do {

5seq

6queue_push (1, q);

7queue_push (2, q);

8i := queue_top(q);

9j := queue_pop(q);

10}

11goto l1;

12

13loc l1: invariant

14i = j

15& i = 1

16& queue_length(q) = 1

17& not(queue_is_empty(q))

18when

19& True

20do {

21seq

22queue_clear(q);

23}

24goto l2;

25

26loc l2: invariant queue_is_empty(q)

27

28

3.5.1.9 Built-in functions over discrete variables

We summarize in Table 3.1 the built-in functions for discrete variables.

28

IMITATOR user manual

Table 3.1: Built-in functions summary

Name Description
Arithmetic

pow Pow a number
rational_of_int Convert an int expression to a rational one

Binary words
shift_left Shift a binary to the left (truncate to the binary word length)
shift_right Shift a binary to the right (truncate to the binary word length)
fill_left Shift a binary to the left (no truncate)
fill_right Shift a binary to the right (no truncate)
logand And bitwise on binary numbers
logor Or bitwise on binary numbers
logxor Xor bitwise on binary numbers
lognot Not bitwise on a binary number

Arrays
array_append Concatenate two arrays
array_length Get length of an array
array_mem Search existence of an element in an array

Lists
list_cons Construct a list by adding an element to the beginning
list_hd Get head of a list
list_is_empty Check if a list has elements
list_length Get length of a list
list_rev Reverse a list
list_mem Search existence of an element in a list
list_tl Get tail of a list

Stack
stack_push Push an element on the top of a stack - the stack is modified
stack_pop Get and remove the element on the top of a stack - the stack is modified
stack_top Get the element on the top of a stack without modifying it
stack_clear Remove all elements of a stack - the stack is modified
stack_is_empty Check if the stack has elements
stack_length Get the number of elements of a stack

Queues
queue_push Add an element at the beginning of a queue - the queue is modified
queue_pop Get and remove the last element of a queue - the queue is modified
queue_top Get the last element of a queue without modifying it
queue_clear Remove all elements of a queue - the queue is modified
queue_is_empty Check if the queue has elements
queue_length Get the number of elements of a queue

Remark 3.6. The parameters of a function are evaluated from left to right.

Remark 3.7. Some functions, called “Side-effects functions” can modify the value of
some input variables and therefore are subject to side-effects. Side-effects functions

29

IMITATOR user manual

can only be used in updates, more precisely in the body of the seq block of an update
(see Section 3.5.3).

3.5.2 Default initial value

Discrete variables must be initialized to a single constant value in the init definition; if they
are not, a warning is issued, and they are arbitrarily set to a standard value.

This initial default value of primitive types is as follows, depending on the variable type:
Rational 0
Integer 0
Boolean false
Binary words 0b0

The initial default value of composite types is as follows:
Array []

List list([])

Stack stack([])

Queue queue([])

3.5.3 Updates

The presence of clocks, parameters, discrete variables, and structures (such as arrays) re-
quires a particular handling of the updates, which we describe in the following.

In any case, the paradigm is that discrete variables are first tested in guards, then updated
in updates.

3.5.3.1 Conflicts in updates

Conflicts can arise in standard updates due to the modular nature of NIPTA. If two IPTA in
parallel update the same variable on the same synchronized action a (e.g., an IPTA performs
i := 2 on a transition labeled with a, while another one performs i := 3 on a transition
labeled with a), then a warning is issued, and the behavior of the NIPTA becomes unspecified
(i.e., IMITATORwill choose one or the other assignment in an unspecified manner).

3.5.3.2 Standard updates

By default, updates are not sequential in IMITATOR, but rather define a partial function on
variables (including clocks). That is, in the following block:

1when x = 0 & i = 1 do {i := i+1, i := 5, x := i}

after the update, x is equal to 0 (because x := i implies that the new value of x becomes the
value of i before the update), while the value of i is unspecified due to a non-deterministic
assignment, i.e., i is updated to two different values in the update (this is an ill-formed be-
havior, and a warning will be triggered).

Since IMITATOR 3.3, we also allow for some sequential updates on the discrete variables,
as explained in the following.

30

IMITATOR user manual

3.5.3.3 seq-then updates

seq-then updates are more complex updates, allowing first a set of sequential updates (on
the discrete variables only, including side-effects functions), called the “seq block” , followed
by “standard updates” (non-sequential), called the then block.

The seqblock A seq block can be used to define sequential updates on any discrete variable
of any type. Contrary to the then block (or to the standard updates), it is possible to make
modifications of data structures (such as stacks and queues) using side-effects functions. The
seq block can be seen as an imperative update part that is processed before the then block.
It is not possible to update clocks in a seq block.

In a model that contains multiple synchronized IPTA, given a transition, all seq blocks (all
sequential updates) in all IPTA are processed as follows: the updates are performed sequen-
tially starting from the top-most IPTA in the input model file (i.e., following the definition
order of IPTA). That is, all the sequential updates of the first of the IPTA are processed, fol-
lowed by all the sequential updates of the second IPTA, and so on.

Examples of a seq update expression:

1do {

2

3(* only do expression *)

4seq

5i := 1; (* after this update: i = 1 *)

6i := i + 1; (* after this update: i = 2 *)

7end

8

9}

1do {

2

3(* only do expression *)

4seq

5(* modification of stack s (with side -effet) *)

6stack_push (1, s);

7(* modification of stack s (with side -effet) *)

8stack_push (2, s);

9end

10

11}

The then block The then block can be used to update clocks or discrete variables. These
updates are not sequential so, as described before, in case of multiple updates of the same
variable, a warning is issued, and the behavior of the NIPTA becomes unspecified. The then
block is essentially the same as a standard update (see Section 3.5.3.2). This kind of update
was the only one in IMITATOR until IMITATOR 3.3.

Below is an example of a then update expression:

1(* Assume initially i = 1, j = 2, x = 2046 *)

2

3do {

31

IMITATOR user manual

Table 3.2: Blocks features summary

Block Sequential behavior Clock update Discrete update Side effects Variable auto remove
seq

p × p p ×
then × p p × p

4(* only "then" expression *)

5i := j + 3,

6j := i * 3,

7x := i - j

8}

9(* Now: i=5, j=3, x=-1 *)

Below is an example of a then update expression, that is ill-formed and will trigger a
warning:

1(* Assume initially i = 1 *)

2

3do {

4(* only "then" expression *)

5i := 3,

6i := 4,

7x := i

8}

9(* Now , x = 1, while i = 3 OR i = 4 (unspecified !) *)

The seq-then block In one given transition, the seq block is executed before the then

block.
Recall that, in a model that contains multiple synchronized IPTA, given a transition, all

seq blocks are performed sequentially starting from the top-most IPTA in the input model
file. Only once all seq blocks are computed (sequentially), all then blocks are then executed
(at once). Keep in mind that, contrarily to the seq blocks, updates contained in then blocks
are not computed sequentially.

The value of the variables used in the right-hand part of an update in the then block is
the value computed after executing the seq block updates.

Remark 3.8. Note the use of semicolon in the sequential block (seq block), in contrast
to the comma in the declarative block (then block).

Table 3.2 summarizes what is allowed in the seq and then blocks. “Side effects” refers to
side effect functions, while “variable auto remove” denotes the fact that any variable used
in the seq block is considered useful and will not be automatically removed (see option
-no-var-autoremove in Chapter 8 for more explanations on IMITATOR automatic variable
deletion).

Examples of a seq-then update expression:

1do {

2

3seq

32

IMITATOR user manual

4i := 0; (* i = 0 *)

5i := i + 1; (* now , i = 1 *)

6then

7i := 3, j := i (* now , i = 3 and j = 1 *)

8end

9

10}

1do {

2

3seq

4(* modification of stack s using side -effects *)

5stack_push (1, s);

6(* modification of stack s using side -effects *)

7stack_push (2, s);

8(* set i to 0 *)

9i := 0;

10(* i = 1, below *)

11i := i + 1;

12(* below , updating a clock is forbidden in a do block *)

13(* x := 0 *)

14then

15x := i,

16j := stack_top(s),

17(* below , r is update several time *)

18(* as these constraints updates are not sequential *)

19(* the value of r will be unspecified *)

20r := 0,

21r := 1

22(* using side -effects functions is forbidden in a then block *)

23(* r := stack_pop(s) *)

24end

25

26}

Examples of a seq-then update expression with multiple synchronized transitions:

1(* ** *)

2automaton pta1

3(* ** *)

4synclabs : a;

5

6loc l1: invariant x <= 0

7when True

8do {

9seq

10stack_push (0, s);

11i := 1;

12then

13(* r1 = 1 and x = 2, because all seq updates in all IPTA are made

before *)

14r1 := stack_top(s),

15x := i

16end

17}

18sync a goto lend;

33

IMITATOR user manual

19

20accepting loc lend: invariant True

21end (* pta *)

22(* ** *)

23

24(* ** *)

25automaton pta2

26(* ** *)

27synclabs : a;

28loc l1: invariant True

29when

30& True

31do {

32seq

33i := 2;

34stack_push (1, s);

35then

36(* r2 = 1, because all seq updates in all IPTA are made before *)

37r2 := stack_top(s)

38end

39}

40sync a goto lend;

41

42accepting loc lend: invariant True

43end (* pta *)

44(* ** *)

45

46(* ** *)

47automaton pta3

48(* ** *)

49synclabs : a;

50loc l1: invariant True

51when

52& True

53do {

54(* r3 = 1, because all seq updates in all IPTA are made before *)

55r3 := stack_top(s)

56}

57sync a goto lend;

58

59accepting loc lend: invariant True

60end (* pta *)

3.5.4 Runtime errors

Runtime errors can be encountered during updates. For a example, during an update, a divi-
sion by zero can be encountered: in an update i := 2 / i, when the current value of i is 0,
the result becomes undefined.

When a runtime error is encountered, an exception is raised and IMITATOR terminates
with an error.

The possible runtime errors include:

• division by 0;

34

IMITATOR user manual

• non-integer division on integer expression;

• index out of range (e.g., in an array);

• operation on an empty collection (e.g., accessing the top element of an empty stack).

35

Chapter 4

Parameter synthesis using
IMITATOR

We give here the commands corresponding to the main analysis features of IMITATOR. We
only give the most useful options. For more detailed commands, and a complete list of op-
tions, see Chapter 8.

4.1 Synthesis and emptiness

Main command The standard IMITATOR command for all algorithms is:

imitator model.imi property.imiprop

Synthesis and emptiness IMITATOR features two modes for properties:

• synthesis (#synth): synthesizing all valuations such that a property holds;

• witness (#exhibit or #witness, both equivalent): find (at least) one valuation such
that a property holds.

While the “witness” mode is close to (the contrary of) emptiness-checking, the “witness”
mode is not strictly speaking an emptiness check: rather, the algorithm stops as soon as it
finds some valuations, but there may be more than one, so the result can still be symbolic.
For example, in the case of reachability-checking, IMITATOR would output the parameter
valuations associated with the first target symbolic state found.

While all properties implement synthesis, not all of them implement emptiness; a warn-
ing would then be raised.

In the following, we now describe the algorithms implemented in IMITATOR.

4.2 Reachability

A main problem in parametric timed automata is to compute the set of parameter valuations
for which some location (for instance, an error location) is reachable.

36

IMITATOR user manual

The property syntax is as follows:1

property := #synth EF(state_predicate);

where state_predicate is a state predicate, for example of the form loc[AUTOMATON] =

LOCATION, where AUTOMATON is an automaton name, and LOCATION is a location name. State
predicates allow conjunction, disjunction and the use of global discrete variables (see Sec-
tion 9.3 for details).

The algorithm EFsynth implemented in IMITATOR is a basic breadth-first procedure,
close to the one described in [JLR15]. Of course, the EF-emptiness problem being undecid-
able [AHV93], the analysis is not guaranteed to terminate.

One obtains a result in an external text file (model.res) formatted using a standardized
manner (see Chapter 5), and therefore easier to parse using an external tool than the terminal
output.

The options -merge [AFS13] and -comparison inclusion are implicitly activated for
this algorithm, as they usually greatly increase the analysis efficiency and the termination.
You may want to use -merge none and -comparison none to disable them. The options
-dynamic-elimination (not activated by default) and -comparison doubleinclusion

can also be used to (try to) reduce the state space.
IMITATOR can also output the state space in a graphical form (option

-draw-statespace), output the constraint synthesized in a graphical form in two
dimensions (option -draw-cart), or output the text description of all states (option
-states-description).

Remark 4.1. For all reachability/safety algorithms (including cycle synthesis), one can
also use the accepting keyword in the model (in front of a location, see grammar in
Section 9.2). In that case, one can use the accepting predicate inside the property state
predicate. That is, one can define properties of the form:

property := #witness EF(accepting);

or even:

property := #synth EF(loc[pta] = l1 | (accepting & loc[pta] <> l2));

The semantics of the acceptance of a state is as follows: “at least one of the locations
is accepting (as specified by the accepting keyword in the model).”

4.3 Safety

Often, we are rather interested in safety synthesis, i.e., the set of valuations for which the
target location is unreachable.

The property syntax is as follows:

property := #synth AGnot(state_predicate);

1IMITATOR uses the TCTL syntax, where EF notably denotes reachability.

37

IMITATOR user manual

Internally, this algorithm works exactly the same as the reachability-synthesis, and at the
end the obtained constraint is negated (with parameters being constrained to be included in
the initial state valuations).

4.4 EF-minimization

This algorithm synthesizes the minimum valuation for a given parameter for which a given
location is reachable. This algorithm is briefly mentioned in [And+19].

The property syntax is as follows:

property := #synth EFpmin(state_predicate , p);

where p is the parameter the value of which must be minimized.

4.5 EF-maximization

This algorithm is the dual of EF-minimization (see Section 4.4).
The property syntax is as follows:

property := #synth EFpmax(state_predicate , p);

4.6 EF with minimal time reachability

This algorithm synthesizes the parameter valuations for which a given location is reachable
in minimal time [And+19].

Our algorithm uses a priority queue, with priority to the earliest successor for the selec-
tion of the next state.

The property syntax is as follows:

property := #synth EFtmin(state_predicate);

The maximum time reachability is currently not implemented.

4.7 Parameter synthesis using patterns

IMITATOR basically only supports bad state reachability synthesis on the one hand, and
algorithms such as the inverse method and the cartography on the other hand. However,
many correctness properties can reduce to reachability using observers (see [ABL98; Ace+98;
Ace+03; And13b]).

Encoding observers can be done manually (using ad-hoc IPTA), or using predefined cor-
rectness property patterns commonly met in the literature.

Warning 2. These properties assume time-progress, i.e., if the model is stuck in a time-
lock, these properties may give incorrect results.

If using a predefined property pattern, the property pattern must be specified as follows:

38

IMITATOR user manual

property := #synth pattern(<PROP >);

where <PROP> must follow the syntax of the following patterns, where a, a1, a2 are actions,
and the deadline d is a (possibly parametric) linear expression:

•
if a2 then a1 has happened before

•
everytime a2 then a1 has happened before

•
everytime a2 then a1 has happened once before

•
a within d

•
if a2 then a1 has happened within d before

•
everytime a2 then a1 has happened within d before

•
everytime a2 then a1 has happened once within d before

•
if a1 then eventually a2 within d

•
everytime a1 then eventually a2 within~d

•
if a1 then eventually a2 within d once before next

•
sequence a1, ..., an

•
always sequence a1 , ..., an

The semantics of these properties is detailed in [And13b].
IMITATOR then translates the selected pattern into an additional observer automaton,

and performs some safety or reachability synthesis.

4.8 Parametric deadlock-freeness checking

Given an NIPTA, PDFC synthesizes a parameter constraint such that, for any parameter val-
uation in that constraint, the system is deadlock-free [And16].

The property syntax is as follows:

property := #synth DeadlockFree;

As usual, IMITATOR can also output the state space in a graphical form (option
-draw-statespace) or output the constraint synthesized in a graphical form in two dimen-
sions (option -draw-cart).

39

IMITATOR user manual

4.9 Parametric cycle synthesis

4.9.1 Accepting cycle synthesis

Given an NIPTA, IMITATOR synthesizes a parameter constraint such that, for any parameter
valuation in that constraint, the system contains at least one accepting cycle, i.e., an infinite
run passing infinitely often by location matching an accepting condition. Such accepting
conditions are given in the form of a state predicate, i.e., a conjunction or disjunction of lo-
cations and values for discrete variables. This can be seen as a liveness property, or more
precisely Büchi acceptance condition.

IMITATOR implements two algorithms to this goal:

1. a basic BFS algorithm using a variant of Tarjan’s strongly connected components algo-
rithm [And+21] (Section 4.9.1.1); and

2. an NDFS algorithm with several options [NPV18; And+21] (Section 4.9.1.2).

In both cases, the property syntax is as follows:

property := #synth CycleThrough(state_predicate);

Syntax freedom 1. IMITATOR accepts LoopThrough as an equivalent keyword for
CycleThrough.

The second algorithm (Section 4.9.1.2) is the default in IMITATOR.
As usual, IMITATOR can also output the state space in a graphical form (option

-draw-statespace) or output the constraint synthesized in a graphical form in two dimen-
sions (option -draw-cart).

4.9.1.1 Accepting cycle (BFS + Tarjan)

This (non-default) algorithm can be called using the following option syntax:
-cycle-algo BFS

4.9.1.2 Accepting cycle (NDFS)

This (default) algorithm can be called using the following option syntax:
-cycle-algo NDFS

It is also called when no -cycle-algo is specified.
Two additional options can be specified (a third one, -pending-order, is explained

later):

1. -layer (or -no-layer) to enable (or disable) layered NDFS [NPV18];

2. -subsumption (or -no-subsumption) to enable (or disable) subsumption [NPV18].

40

IMITATOR user manual

By default, -layer is disabled, and -subsumption is enabled, as experiments showed this is
the most efficient setting [NPV18].

All combinations of options yield an exact result.
At each cycle found, IMITATOR outputs its number (when using the synthesis) and the

node at which the cycle was detected. When it terminates the complete parameter constraint
is displayed.

When using the -depth-limit option, the depth-first search stops exploring the current
branch and backtracks when this depth is reached.

Exploration with layers The exploration with layers considers different ordering policies
for its pending list via the -pending-order option:

-pending-order none : the states are added to the pending list without specific policy (de-
fault option);

-pending-order accepting : the accepting states are added at the head of the pending
list, the others at the tail;

-pending-order param : the states are added to the list on the basis of a largest projection
of zone on parameters first;

-pending-order zone : the states are added to the list on the basis of a largest zone first.

Accepting cycle (NDFS) with iterative deepening The NDFS algorithm described above
with all its options can also be applied in an iterative manner, based on depth limits. Each
iteration explores a deeper state space, taking advantage of the previous computation. The
iterations are applied until either the exact constraint is found or a limit is reached. This
iterative analysis uses the following options :

-depth-init allows for starting this iterative computing by indicating the initial depth limit
to be used;

-depth-limit is the maximal depth at which the last iteration will be run.

-depth-step indicates the step between the depths of two iterations;

The results obtained at each iteration are displayed, thus giving valuable information to
the user.

As usual, IMITATOR can also output the state space in a graphical form (option
-draw-statespace) or output the constraint synthesized in a graphical form in two dimen-
sions (option -output-cart).

4.9.2 Accepting cycle with generalized acceptance condition (BFS)

Generalized Büchi conditions are supported by IMITATOR. The property syntax is as follows:

property := #synth CycleThrough(state_predicate_1 , ..., state_predicate_n);

The semantics is that each of the n conditions must hold on at least one state of the same
cycle, in order for this cycle to be accepting.

41

IMITATOR user manual

Remark 4.2. Only BFS (see Section 4.9.1.1) is available for these generalized conditions.

Example 4.1. Assume the following condition:

property := #synth CycleThrough(loc[pta1] = l1, loc[pta1] = l2 and loc[pta2]
= l2, accepting , i = 2 or i = 3);

A cycle is accepting if it contains:

• a state in which pta1 is in location l1; and

• another state in which pta1 is in location l2 and at the same time pta2 is in loca-
tion l2; and

• another state syntactically labeled as accepting in the model; and

• another state in which either i is equal to 2, or i is equal to 3.

4.9.3 Any cycle synthesis

Given an NIPTA, IMITATOR synthesizes a parameter constraint such that, for any parameter
valuation in that constraint, the system contains at least one cycle, i.e., an infinite run (this is
notably discussed in [AL17]).

The property syntax is as follows:

property := #synth Cycle;

This is syntactic sugar for the following property:

property := #synth CycleThrough(True);

Syntax freedom 2. IMITATOR accepts the Loop keyword as an equivalent for Cycle.

4.10 Parametric non-Zeno cycle synthesis

Given an NIPTA, IMITATOR synthesizes a parameter constraint such that, for any parameter
valuation in that constraint, the system contains at least one cycle, under the non-Zeno as-
sumption [And+17]. That is, only parameter valuations yielding at least one non-Zeno cycle
are synthesized. Parameter valuations yielding only Zeno-cycles or no cycles are ignored.

The method implemented in IMITATOR is based on CUB-IPTA, a syntactic subclass of
PTA based on the CUB-TA proposed in [Wan+15]. The precise algorithm we use, including
the transformation of an arbitrary PTA into a CUB-PTA, is described in [And+17].

The property syntax is:

property := #synth NZCycle;

Two options are possible in IMITATOR:

42

IMITATOR user manual

1. a partial method (but slightly faster), that first detects whether the input NIPTA is al-
ready a CUB-PTA; if so, it applies non-Zeno checking on this CUB-PTA; otherwise, the
returned constraint will be false.

Use -nz-method check.

2. a complete method (though of course without guarantee of termination), that trans-
forms the NIPTA into a network of CUB-PTAs, and applies non-Zeno checking on the
transformed CUB-PTA.

Use -nz-method transform.

Use -nz-method already.

Warning 3 (restrictions). In contrast to most other algorithms of IMITATOR, these two
algorithms work on a slightly restricted syntax:

• in a guard or invariant, each clock must be used at most once;

• invariants should not contain discrete inequalities (i.e., inequalities over discrete
variables only);

• the use of discrete variables was not tested (and may not be always working);

• the conditional updates are not supported;

• the use of coefficients on parameters (different from 0 or 1) was not tested;

• the use of stopwatches or multi-rate was not tested.

Overall, this part of IMITATOR has been less tested and is probably less stable than the
rest of the tool.

As usual, IMITATOR can also output the state space in a graphical form (option
-draw-statespace) or output the constraint synthesized in a graphical form in two dimen-
sions (option -draw-cart).

Remark 4.3. The accepting cycles are not (yet?) supported for non-Zeno synthesis.

4.11 Inverse method: Trace preservation and robustness

Given an NIPTA and a reference parameter valuation, the inverse method IM synthesizes a
parameter constraint such that, for any parameter valuation in that constraint, the set of
traces is the same as for the reference valuation [And+09]. This problem is known as the
trace-preservation synthesis, and formalized in [ALM20]. The trace-preservation emptiness
problem being undecidable [ALM20], the analysis is not guaranteed to terminate (although
it often does in practice).

The property syntax is of the following form:

43

IMITATOR user manual

property := #synth IM(parameter_valuation);

where parameter_valuation is a reference valuation of the form p1 = 1 & p2 = 2 &...

(see Section 9.3 for details).

Syntax freedom 3. IMITATOR accepts the following equivalent keywords for IM:

• InverseMethod

• TracePreservation

IMITATOR can also output the state space in a graphical form (option
-draw-statespace) or output the constraint synthesized in a graphical form in two
dimensions (option -draw-cart).

Recall that IMITATOR generates a result in an external text file (model.res) and format-
ted using a standardized manner (see Chapter 5).

IMITATOR also offers two similar algorithms: IMK and IMunion return similar but slightly
different results (see [AS11]).

4.12 Behavioral cartography

Given an NIPTA and a bounded parameter domain, the behavioral cartography BC synthe-
sizes tiles, i.e., parameter domains such that for any parameter valuation in that domain, the
set of traces is the same [AF10]. The corresponding problem being undecidable [ALM20],
the analysis is not guaranteed to terminate; when it terminates, it may also leave “holes”, i.e.,
parameter domains not covered by any tile.

The property syntax is of the following form:

property := #synth BCcover(hyper_rectangle);

where hyper_rectangle is a reference hyper-rectangle of the form p1 = 1..5 & p2 =

2..4 &... (see Section 9.3 for details).
IMITATOR can also output all state spaces in a graphical form (option

-draw-statespace), or output the constraints synthesized in a graphical form in two
dimensions (option -draw-cart).

When using the following syntax with an optional second argument:

property := #synth BCcover(hyper_rectangle , step =2/3);

one can specify the interval between any two points of which the coverage is checked (see
[AF10]), here 2/3. By default, it is 1; setting 1

3 often leads to full coverage when 1 was not
enough. Any strictly positive rational (or integer) is allowed.

Warning 4. This optional argument is syntactically accepted for other cartography-like
algorithms, but may not always be considered by the algorithm, nor was fully tested.

In addition, state spaces and separate graphical cartographies for each tile can also be
generated by adding option -tiles-files.

44

IMITATOR user manual

Behavioral cartography with random coverage

An alternative to the behavioral cartography is a random coverage [AF10]; it can be seen as a
kind of sampling.

The property syntax is of the following form:

property := #synth BCrandom(hyper_rectangle , nb);

where nb is the number of times an integer point is randomly selected within the domain
defined. If this point is already covered by one of the tiles, the inverse method is not called,
an another point is selected. Note that nb represents the number of integer points randomly
selected; the number of calls to the inverse method can be significantly smaller.

A second algorithm is BCrandomseq [ACE14], which first selects random point selections,
and then enumerates all integer points to make sure they are actually covered. This algorithm
is mostly interesting when distributed (see [ACE14; ACN15]).

Behavioral cartography with shuffle enumeration

A second alternative to the behavioral cartography is an enumeration of all integer points in a
random fashion. That is, all integer points in the reference parameter domain are generated
in a data structure (an array), and then are shuffled. Then the points are enumerated [ACN15].
It differs from the random cartography in the sense that the random cartography randomly
samples points without guarantee of full coverage, whereas the shuffle enumeration guaran-
tees the coverage of all integer points.

The property syntax is:

property := #synth BCshuffle(hyper_rectangle);

4.13 Parametric reachability preservation

IMITATOR implements an algorithm solving the following problem: “given a reference pa-
rameter valuation v and some location `, synthesize other valuations that preserve the reach-
ability of `”. By preserving the reachability, we mean that ` is reachable for the other valua-
tions iff ` is reachable for v .

This algorithm PRP, that somehow combines EFsynth and IM (see [And+15] for details),
is called using the following property syntax:

property := #synth PRP(state_predicate , parameter_valuation);

Parametric reachability preservation cartography

An extension of PRP to the cartography (named PRPC) is also available: PRPC synthesizes
parameter constraints in which the (non-)reachability of ` is uniform. PRPC was showed
in [And+15] to be a suitable alternative to EFsynth, especially when distributed (see option
-distributed).

The property syntax for this algorithm PRPC is as follows:

property := #synth PRPC(state_predicate , hyper_rectangle);

45

IMITATOR user manual

4.14 Summary

We summarize algorithms in Table 4.1, recalling the basic syntax, and specifying whether
they support the #witness mode that stops as soon as (at least) one parameter valuation is
witnessed.

Table 4.1: Summary of the algorithms syntax

Algorithm Syntax Synth Witness
Reachability EF(state_predicate)

p p
Safety AGnot(state_predicate)

p p
Parameter minimization EFpmin(state_predicate, p)

p p
Parameter maximization EFpmax(state_predicate, p)

p p
Minimal-time EFtmin(state_predicate)

p p
Cycle Cycle

p p
Accepting cycle CycleThrough(state_predicate)

p p
Accepting cycle CycleThrough(state_predicates)

p p
Non-Zeno cycles NZCycle

p ×
Deadlock-freeness DeadlockFree

p ×
Inverse method IM(parameter_valuation)

p ×
Inverse method IMK(parameter_valuation)

p ×
Inverse method IMunion(parameter_valuation)

p ×
Cartography BCcover(hyper_rectangle)

p ×
Cartography BCrandom(hyper_rectangle, nb)

p ×
Cartography BCrandomseq(hyper_rectangle, nb)

p ×
Cartography BCshuffle(hyper_rectangle)

p ×
PRP PRP(state_pred, parameter_val)

p ×
PRPC PRPC(state_pred, hyper_rect)

p ×
Patterns pattern(<pattern>)

p p

We give in Table 4.2 the default values for merging and comparison. Whenever merging
is enabled (cell

p
), the following options are used by default:

-merge onthefly -merge -candidates queue -merge -update merge

-merge -restart off

4.15 Symbolic state space computation

Finally, instead of synthesizing parameter valuations or checking for emptiness, IMITATOR
can also compute the entire symbolic state space (“parametric zone graph”). Of course, the
state space may be infinite, and this analysis is not guaranteed to terminate.

The standard command is:

imitator model.imi -mode statespace -states -description

The option -states-description generates a file with a textual description of all states
(without this option, IMITATOR will not output anything). Each state is represented with

46

IMITATOR user manual

Table 4.2: Summary of the algorithms default options

Algorithm Syntax Merging -comparison

State space computation N/A × equality

Reachability EF(state_predicate)
p

inclusion

Safety AGnot(state_predicate)
p

inclusion

Parameter minimization EFpmin(state_predicate, p)
p

inclusion

Parameter maximization EFpmax(state_predicate, p)
p

inclusion

Minimal-time EFtmin(state_predicate)
p

inclusion

Cycle Cycle × equality

Accepting cycle CycleThrough(state_predicate) × equality

Accepting cycle CycleThrough(state_predicates) × equality

Non-Zeno cycles NZCycle × equality

Deadlock-freeness DeadlockFree
p

inclusion

Inverse method IM(parameter_valuation) × equality

Inverse method IMK(parameter_valuation) × equality

Inverse method IMunion(parameter_valuation) × equality

Cartography BCcover(hyper_rectangle) × equality

Cartography BCrandom(hyper_rectangle, nb) × equality

Cartography BCrandomseq(hyper_rectangle, nb) × equality

Cartography BCshuffle(hyper_rectangle) × equality

PRP PRP(state_pred, parameter_val)
p

inclusion

PRPC PRPC(state_pred, hyper_rect)
p

inclusion

Patterns pattern(<pattern>)
p

inclusion

its discrete part (location and values of the discrete variables), the clock and parameter con-
straints, and below their projection onto the parameters.

IMITATOR can also output the state space in a graphical form using option
-draw-statespace.

47

Chapter 5

Understanding the IMITATOR result

IMITATOR generates a file model.res. This file has a standardized format, and can therefore
be parsed using an external tool.

To disable the creation of this file, please use -no-output-result (see Chapter 8).
We do not give a formal grammar for this file (yet), but it can be easily inferred from ex-

ample outputs.

5.1 Header

The file header recalls the exact version of IMITATOR used to run the analysis, including the
build number, the git branch and the git SHA hash. It also recalls the model name, the exact
command used, and the time when the file was generated (which may slightly differ from the
time the analysis was run, if the analysis was significantly long).

Then, the header recalls global information on the model (number of IPTA, of clocks, of
parameters, whether the model contains clocks with a rate 6= 1, etc.).

5.2 The resulting constraint

The main result of a single synthesis (i.e., EFsynth, PDFC, IM and its variants, PRP. . .)
is a constraint. This result is clearly delimited by delimiters BEGIN CONSTRAINT and END

CONSTRAINT.
The result can be a convex or a non-convex constraint. In some cases, the result is made of

two (convex or non-convex) constraints: a good constraint (characterizing good parameter
valuations), and a bad constraint (characterizing bad parameter valuations). Both parts of
the results are then separated using the keyword <good|bad> (of course the good constraint
comes left of this separator, and the bad constraint comes right).

The resulting constraint comes with two other information:

• its nature, i.e., whether it attempts to characterize a good set of valuations, a bad set
of valuations, or both a good set and a bad of valuations. “Good” and “bad” must
be understood to the property that is being checked (non-reachability of some states,
deadlock-freeness, etc.). The constraint nature is only an attempt, as the constraint
may not always be sound (see below).

48

IMITATOR user manual

• its soundness, i.e., whether the constraint is exact (IMITATOR returned exactly the
set of parameter valuations solution to the analysis requested), a possible under-
approximation of that result, a possible over-approximation of that result (in some rare
cases), or a possibly invalid constraint (in which case the result output by IMITATOR
shall not be used).

Note that in almost all analyses, IMITATOR returns an exact or an under-approximated con-
straint. A possibly invalid constraint can be synthesized when some options are used: for
example, computing the result of IM with the merging enabled (-merge yes) yields a possi-
bly invalid constraint, as it was shown that the merging optimization does not preserve the
validity of the result of IM [AFS13].

Finally, the result also comes with an evaluation of the termination: the termination can
be regular (the analysis went to its end without interruption) or an early termination, with
some states unexplored (e.g., if a maximum analysis time (-time-limit), a maximum explo-
ration depth (-depth-limit), etc., was set).

5.3 The cartography result

The behavioral cartography does not strictly speaking generate a result, but a list of tiles:
each of them is made of the reference valuation that yielded that tile, the associated con-
straint again with its nature, its soundness, and the analysis termination. In addition, each
tile comes with its associated number of states and transitions, and its computation time.

5.4 General statistics

The result file finally contains general statistics such as the global computation time (exclud-
ing the generation of graphics, or the result file), an estimation of the memory used, the num-
ber of states and transitions computed, etc. Finally, some statistics on specific operations
(model parsing, graphics drawing, etc.) are given. More statistics are obtained with higher
levels of verbosity, or with the -statistics option.

5.5 Projection onto some parameters

The result can be projected onto selected parameters, by using the following syntax at the
end of the property file:

1projectresult(param1 , ..., paramn);

In that case, all parameters not in that set are eliminated using variable elimination, and
the result in the result file only contains the selected parameters.

This projection is also added to the states description (see option
-states-description) and to the graphical state space output (see option
-draw-statespace full).

49

Chapter 6

Graphical output and translation

Again, we only give the most useful options. For more detailed commands, and a complete
list of options, see Chapter 8.

6.1 State space

To generate the (discretized) state space of a given computation in a graphical form, use:

imitator model.imi [property.imiprop] [options] -draw -statespace

normal

IMITATOR will generate a file model-statespace.pdf. States are made of two part:
the left-hand number (e.g., s_0) is the number of the symbolic state, which comes from
IMITATOR internal representation (s_0 is the first one to be generated, and so on); the right-
hand part displays all the discrete part of the symbolic state vertically, that is the current
location in each of the NIPTA in parallel, and the value of possible discrete variables (if any).
Consider state s_1 in Fig. 6.1b (and originating from the example in Chapter 2): the current
location of IPTA proc_1 is active1, the current location of IPTA proc_2 is idle2, while the
current location of IPTA observer is obs_waiting. In addition, the current value of vari-
able turn is −1 while the current value of counter is 0. The color is chosen according to
IMITATOR internal choice: however, two symbolic states with the same color have the same
discrete part (location and values of the discrete variables). For example, this is the case of
s_4 and s_5 in Fig. 6.1b.

Note that, beyond about 1,000 states or 1,000 transitions, the dot utility (responsible to
generate the state space) may crash.

Using -draw-statespace undetailed makes a more compact representation, but is
also less informative as only the state number and the transition labels are shown.

Conversely, -draw-statespace full makes a more detailed representation, by also
adding to the state space all constraints: the clock and parameter constraints, and below
their projection onto the parameters. This option is mostly suitable for small state spaces.

Example 6.1. An example of state space with no details (output using
-draw-statespace undetailed), with normal details (using -draw-statespace

50

IMITATOR user manual

normal), and in verbose mode (using -draw-statespace full) are given in Figs. 6.1a
to 6.1c.

These graphics were generated using the example in Chapter 2 with the following
command:

imitator fischer.imi fischer.imiprop -depth -limit 4

-draw -statespace normal

(where normal should be replaced with undetailed or full, respectively)

6.2 Visualizing the synthesized constraint in 2D

To visualize the constraint generated by IMITATOR using a 2-dimensional plot (thanks to the
external plot utility), use:

imitator model.imi property.imiprop [options] -draw -cart

This will generate file model_cart.png.
The two dimensions chosen for the plot are the first two (non-constant) parameter di-

mension in the model.
Additional useful options are -draw-cart-x-min, -draw-cart-x-max,

-draw-cart-y-min, -draw-cart-y-max to tune the values of the axes, and
-graphics-source to keep the plot source.

6.3 Translation to UPPAAL

An automatic translation of the input model to the UPPAAL syntax [LPY97] is available. To
generate an equivalent UPPAAL model without performing any analysis, use:

imitator model.imi -imi2Uppaal

IMITATORwill generate a file model-uppaal.xml. Note that the translation of properties
is not supported.

Due to the different semantics and features between IMITATOR and UPPAAL, the trans-
lation is done in a “best effort” manner, but the semantics may differ. We review some points
in the following.

Parameters A fundamental difference IMITATOR and UPPAAL is that UPPAAL does not sup-
port timing parameters. Parameters are therefore translated to constants, the value of which
can be manually changed by the user.

Form of the constraints IMITATOR allows a much wider form of constraints than UPPAAL.
In particular, IMITATOR allows any conjunction of linear constraints (see Section 3.1.3) while
UPPAAL mainly allows clocks to be compared to integers. In addition, UPPAAL only allows
invariants of the form x ≤ c or x < c, which is not a restriction in IMITATOR. No checks
are made when translating, and therefore UPPAAL may not accept models translated from
IMITATOR input models using these features.

51

IMITATOR user manual

Trace set for
fischerPAT_obs.imi

s_4

s_7

update_1

s_8

update_2

s_0

s_1

try_1

s_2

try_2

try_2

s_3

update_1

s_6

update_2

s_5

try_1

s_10

access_2update_1update_2

s_9

access_1

init
Generated by IMITATOR 2.10.4 (build 2476)

Git hash: develop/861dbac
Generation time: Mon Jul 2, 2018 14:51:29

(a) No details

Trace set for
fischerPAT_obs.imi

s_4

proc1 : active1

proc2 : active2

observer : obs_waiting

v(turn)=-1

v(counter)=0

s_7

proc1 : check1

proc2 : active2

observer : obs_waiting

v(turn)=1

v(counter)=0

update_1

s_8

proc1 : active1

proc2 : check2

observer : obs_waiting

v(turn)=2

v(counter)=0

update_2

s_0

proc1 : idle1

proc2 : idle2

observer : obs_waiting

v(turn)=-1

v(counter)=0

s_1

proc1 : active1

proc2 : idle2

observer : obs_waiting

v(turn)=-1

v(counter)=0

try_1

s_2

proc1 : idle1

proc2 : active2

observer : obs_waiting

v(turn)=-1

v(counter)=0

try_2

try_2

s_3

proc1 : check1

proc2 : idle2

observer : obs_waiting

v(turn)=1

v(counter)=0

update_1

s_6

proc1 : idle1

proc2 : check2

observer : obs_waiting

v(turn)=2

v(counter)=0

update_2

s_5

proc1 : active1

proc2 : active2

observer : obs_waiting

v(turn)=-1

v(counter)=0

try_1

s_10

proc1 : idle1

proc2 : access2

observer : obs_waiting

v(turn)=2

v(counter)=0

access_2update_1update_2

s_9

proc1 : access1

proc2 : idle2

observer : obs_waiting

v(turn)=1

v(counter)=0

access_1

init
Generated by IMITATOR 2.10.4 (build 2542)

Git hash: feature/MinReach/55b3283
Generation time: Wed Jan 23, 2019 11:04:56

(b) Normal

Trace set for
fischerPAT_obs.imi

s_4

proc1 : active1

proc2 : active2

observer : obs_waiting

v(turn)=-1

v(counter)=0

gamma >= 0
 & delta >= x1
 & x1 >= x2
 & x2 >= 0

gamma >= 0
 & delta >= 0

s_7

proc1 : check1

proc2 : active2

observer : obs_waiting

v(turn)=1

v(counter)=0

gamma >= 0
 & delta >= x2
 & x2 >= x1
 & x1 >= 0

gamma >= 0
 & delta >= 0

update_1

s_8

proc1 : active1

proc2 : check2

observer : obs_waiting

v(turn)=2

v(counter)=0

gamma >= 0
 & delta >= x1
 & x1 >= x2
 & x2 >= 0

gamma >= 0
 & delta >= 0

update_2

s_0

proc1 : idle1

proc2 : idle2

observer : obs_waiting

v(turn)=-1

v(counter)=0

x2 >= 0
 & x1 >= 0

 & gamma >= 0
 & delta >= 0

gamma >= 0
 & delta >= 0

s_1

proc1 : active1

proc2 : idle2

observer : obs_waiting

v(turn)=-1

v(counter)=0

x2 >= x1
 & gamma >= 0
 & delta >= x1

 & x1 >= 0

gamma >= 0
 & delta >= 0

try_1

s_2

proc1 : idle1

proc2 : active2

observer : obs_waiting

v(turn)=-1

v(counter)=0

x1 >= x2
 & gamma >= 0
 & delta >= x2

 & x2 >= 0

gamma >= 0
 & delta >= 0

try_2

try_2

s_3

proc1 : check1

proc2 : idle2

observer : obs_waiting

v(turn)=1

v(counter)=0

x2 >= x1
 & x1 >= 0

 & gamma >= 0
 & delta >= 0

gamma >= 0
 & delta >= 0

update_1

s_6

proc1 : idle1

proc2 : check2

observer : obs_waiting

v(turn)=2

v(counter)=0

x1 >= x2
 & x2 >= 0

 & gamma >= 0
 & delta >= 0

gamma >= 0
 & delta >= 0

update_2

s_5

proc1 : active1

proc2 : active2

observer : obs_waiting

v(turn)=-1

v(counter)=0

gamma >= 0
 & delta >= x2
 & x2 >= x1
 & x1 >= 0

gamma >= 0
 & delta >= 0

try_1

s_10

proc1 : idle1

proc2 : access2

observer : obs_waiting

v(turn)=2

v(counter)=0

x1 >= gamma + x2
 & x2 >= 0

 & gamma >= 0
 & delta >= 0

gamma >= 0
 & delta >= 0

access_2update_1update_2

s_9

proc1 : access1

proc2 : idle2

observer : obs_waiting

v(turn)=1

v(counter)=0

x2 >= gamma + x1
 & x1 >= 0

 & gamma >= 0
 & delta >= 0

gamma >= 0
 & delta >= 0

access_1

init
Generated by IMITATOR 2.10.4 (build 2542)

Git hash: feature/MinReach/55b3283
Generation time: Wed Jan 23, 2019 11:04:24

(c) Verbose

Figure 6.1: Examples of graphical state space

52

IMITATOR user manual

Rational variables Rational variables in IMITATOR are rational-valued with an exact value.
In UPPAAL, they are interpreted as (bounded) integers: overflows may occur and, if their value
becomes non-integer, it seems UPPAAL will just round them to the nearest integer, thus cre-
ating a difference in semantics.

Binary variables

Warning 5. Binary words translation into UPPAAL formalism is experimental. Binary
words are translated and encoded into 32-bit integer variables in UPPAAL (with dedi-
cated functions). For this reason, translating binary words of length greater than 31 bits
or shifting a binary word of an arbitrary length can lead to unexpected behaviors and
results.

Arrays Arrays are only partially supported by our translation to UPPAAL. Array variables,
array literals, arrays element access (read / write) and arrays comparisons are supported by
our translation into UPPAAL.

Warning 6. Although it is possible in IMITATOR to compare an array variable to a literal
array or literal array to another one, this type of comparison is not supported by UPPAAL.

Warning 7. Built-in functions operating on arrays (such as array_concat) are not sup-
ported by our translation.

Lists Lists are not supported by our translation to UPPAAL.

Stacks Stacks are not supported by our translation to UPPAAL.

Queues Queues are not supported by our translation to UPPAAL.

Built-in functions The only IMITATOR built-in function fully supported by our translation
is the pow function.

Partially supported IMITATOR built-in functions are the following: shift_left,
shift_right, fill_left, fill_right. Because of binary words are encoded into integer
variables, these functions could have a unspecified behaviors.

Warning 8. Unsupported IMITATOR built-in functions will not be declared (and im-
plemented) in UPPAAL translation, resulting to a bad program when trying to call one.
The declaration and implementation of these functions in UPPAAL, if the UPPAAL input
syntax allows it, is the responsibility of the user.

53

IMITATOR user manual

Strong broadcast synchronization IMITATOR uses a single communication model: strong
broadcast (see Section 3.3), while UPPAAL uses both channel binary synchronization, and
broadcast synchronization. None of them match IMITATOR’s semantics. Our translation
tries to preserve IMITATOR semantics, using the following scheme:

• Unnamed actions (necessarily used in a single IPTA) remain unnamed in UPPAAL.

• An action a used in a single IPTA is implemented in UPPAAL using a broadcast action
a!.

• An action a used in exactly two IPTA is implemented in UPPAAL using a binary action a,
where the first (i.e., declared first in the IMITATOR file) uses a! while the second uses
a?.

• An action a used in n IPTA with n ≥ 3 is implemented in UPPAAL using a broadcast
action a and an additional variable nb__a initially set to n, and that will be responsible
to check that all automata can indeed synchronize, as follows:

– all invariants contain nb__a = n

– the first automaton (i.e., declared first in the IMITATOR file) involved in the syn-
chronization synchronizes on a! and performs nb__a := 1;

– all other automata involved in the synchronization perform nb__a := nb__a +

1.

From the UPPAAL official semantics, the discrete variables are updated by first execut-
ing the update label given on the a! transition, and then the update labels given on the
a? for increasing, which guarantees the correctness of this construction. (This con-
struction was suggested by Jiří Srba.)

However, a major difference (which may prevent UPPAAL to interpret the translated models)
is that UPPAAL forbids guard on receiving actions (of the form a?). Therefore, translating
an IMITATOR model where an action a is used in two automata (or more) with guards on
more than one transition will lead UPPAAL to not accept the model. A manual editing will be
needed.

Initial constraint The initial constraint is not translated, except for the initial value of the
discrete variables. Notably, the clocks are initially 0 in UPPAAL, which is not necessarily the
case in IMITATOR.

Properties Properties are so far not translated to UPPAAL.

6.4 Translation to HYTECH

IMITATOR supports a translation of the model to the HYTECH syntax [HHW95] (that is quite
close to that of IMITATOR anyway). To generate an equivalent HYTECH model without per-
forming any analysis, use:

54

IMITATOR user manual

imitator model.imi -imi2HyTech

IMITATORwill generate a file model.hy.

The syntax going beyond that of HYTECH (typically, Booleans, binary words, arrays,
lists. . .), which notably includes IMITATOR built-in functions, is obviously not translated
correctly. In addition, the translation of properties is not supported.

6.5 Translation to JANI

Since IMITATOR 3.1, IMITATOR supports a translation of the model to the JANI specifica-
tion [Bud+17]. To generate an equivalent JANI model without performing any analysis, use:

imitator model.imi -imi2Jani

IMITATOR will generate a file model.jani. Note that the translation of properties is not
supported.

Due to the different semantics and features between IMITATOR and JANI, the translation
is done in a “best effort” manner, but the semantics may differ. We review some points in the
following.

Updates IMITATOR and JANI do not have exactly the same semantics in the case of if-
then-else updates. In order to provide a similar behavior, the translation is performed as
follow.

1if (x=1) then (x:=2, y:=3) else (x:=4)

is transformed (and, subsequently, written in JANI format) into

1x := (if (x=1) then 2 else x);

2y := (if (x=1) then 3 else y);

3x := (if (x=1) then x else 4);

Stopwatches and multi-rate clocks If no clock of the input model has a rate different
from 1, then all of them are declared in the output JANI model with the clock type.

Otherwise, if at least one rate uses a non-1 rate in the IMITATOR model, then all of the
clocks (including non multi-rate clocks) are declared with the continuous type and the cor-
responding derivative (1, if non specified in the IMITATOR input model) is explicitly specified
in each location of the output model.

Synchronization JANI synchronization semantics is more permissive than the IMITATOR
one, therefore the exact meaning can be kept. It is done by listing synchronization vectors in
the syncs entry.

55

https://jani-spec.org/
https://jani-spec.org/

IMITATOR user manual

Binary words Binary words are somehow supported by our translation to JANI, but not the
built-in functions.

Warning 9. Built-in functions operating on binary words are not supported by our
translation.

Arrays Arrays are only partially supported by our translation to JANI. Array variables, array
literals, arrays element access (read / write) and arrays comparisons are supported by our
translation into JANI. But not the built-in functions.

Lists Lists are not supported by our translation to JANI.

Stacks Stacks are not supported by our translation to JANI.

Queues Queues are not supported by our translation to JANI.

Built-in functions The only IMITATOR built-in function fully supported by our translation
is the pow function.

Warning 10. Unsupported IMITATOR built-in functions will not be declared in JANI

translation, resulting to a bad program when trying to call one of them. The declaration
and implementation of these functions in JANI, if the JANI formalism allow it, is the
responsability of the user.

Properties Properties are so far not translated to JANI. The corresponding input in the JANI

file exists but remains empty.

6.6 Export to graphics

To generate a graphic representation of the NIPTA model without performing any analysis,
use:

imitator model.imi -imi2JPG

imitator model.imi -imi2PDF

imitator model.imi -imi2PNG

IMITATOR will generate a file model-pta.jpg, model-pta.pdf and model-pta.png re-
spectively (using the dot utility).

Colored transitions are synchronized transitions (i.e., shared by at least two IPTA), black
transitions are local transitions, while dotted transitions are unnamed local transitions (often
referred to as ε-transitions in the literature).

56

IMITATOR user manual

fischerPAT_obs.imi

Generated by IMITATOR 2.10.4 (build 2542)
Git hash: feature/MinReach/55b3283

Generation time: Wed Jan 23, 2019 11:06:59

2 clocks

x1
x2

2 parameters

delta
gamma

2 discrete

turn
counter

Initial

x2 >= 0
 & x1 >= 0

 & gamma >= 0
 & delta >= 0

proc1

idle1 True

active1 delta >= x1

 turn + 1 = 0
try_1
x1:=0

check1 True

True
update_1

x1:=0
turn:=1

 turn > 1
 & x1 >= gamma

no_access_1
x1:=0

 1 > turn
 & x1 >= gamma

no_access_1
x1:=0

access1 True

 turn = 1
 & x1 >= gamma

access_1
x1:=0

CS1 True

True
enter_1

counter:=counter + 1

True
exit_1
x1:=0

counter:=counter - 1
turn:=-1

proc2

idle2 True

active2 delta >= x2

 turn + 1 = 0
try_2
x2:=0

check2 True

True
update_2

x2:=0
turn:=2

 turn > 2
 & x2 >= gamma

no_access_2
x2:=0

 2 > turn
 & x2 >= gamma

no_access_2
x2:=0

access2 True

 turn = 2
 & x2 >= gamma

access_2
x2:=0

CS2 True

True
enter_2

counter:=counter + 1

True
exit_2
x2:=0

counter:=counter - 1
turn:=-1

observer

obs_waiting True

obs_1 True

True
enter_1

obs_2 True

True
enter_2

True
exit_1

obs_violation True

True
enter_2

True
exit_2

True
enter_1

Figure 6.2: Example of PDF export

Example 6.2. Consider again the case study given in Chapter 2 (and of which a TikZ
export was given in Fig. 2.1). Then the result of the -imi2PDF command is given in
Fig. 6.2.

6.7 Export to LATEX

To generate a LATEX representation of the NIPTA model (using the tikz package) without per-
forming any analysis, use:

imitator model.imi -imi2TikZ

IMITATOR will generate a file model.tex. This file is a standalone LATEX file containing a
single figure, which contains the different IPTA in “subfigure” environments. The node po-
sitioning is not yet supported (locations are depicted vertically), so you may need to manually
position all nodes, and bend some transitions if needed.

Example 6.3. Consider again the case study given in Chapter 2: a TikZ export was given
in Fig. 2.1, with some manual positioning.

57

Chapter 7

Inside the box

7.1 Language and libraries

In short, IMITATOR is written in OCaml, and contains about 26,000 lines of code.
IMITATORmakes use of the following external libraries:

• The OCaml ExtLib library (Extended Standard Library for Objective Caml);

• The GNU Multiple Precision Arithmetic Library (GMP);

• The Parma Polyhedra Library (PPL) [BHZ08], used to compute operations on polyhe-
dra.

7.2 Symbolic states

Verification of timed systems (and specially parametric timed systems) is necessarily done
in a symbolic manner, in the sense that the timing information is abstracted by clock con-
straints. However, IMITATOR does not perform what is referred to as symbolic model check-
ing; in other words, the representation of locations in IMITATOR is explicit (and not symbolic
using, e.g., binary decision diagrams).

In short, a symbolic state in IMITATOR is made of the following elements:

• the current location (index) of each IPTA;

• the current value of the discrete variables;

• a constraint on X ∪P representing the continuous information.

In IMITATOR, all rationals (i.e., the value of the rational-valued discrete variables and the co-
efficients used in the constraints) are unbounded rationals (implemented using GMP). Inte-
gers over 32 bits are used to encode int variables. No floating-point approximations (float)
are used, except for the generation of graphics.

58

IMITATOR user manual

7.3 Type system

Since IMITATOR 3.1, several types of discrete variables are supported. Common primitive
types as integer, rational and Booleans are available. Recall from Section 3.5 that they can be
declared with the following keywords:

• Rational: rational (or discrete for backward-compatibility)

• Integer (32 bits): int

• Boolean: bool

• Binary word: binary(l) with l the length of the word

These types are divided into three categories: numerical (for rational and int),
Booleans (for bool) and Binary (for binary(l)).

IMITATOR models are statically typed, in the sense of their variables and expressions
types are resolved prior to the algorithms execution.

7.3.1 Type checking

In order to verify the model type consistency, a step called type checking is applied—during
the semantic analysis prior to the start of the verification or synthesis algorithm—on all
expressions of the model: declarations, assignments, updates, conditions (if-then-else),
guards and invariants. Type checking does the following :

• It checks type consistency within the expressions;

• It resolves the types of the expressions;

• It applies a numerical type to literal numbers according to the numerical type held by
their outer expression;

• It checks consistency between an expression type and variable type, in case of an as-
signment;

• It checks the consistency between an expression type and its grammar rule.

7.3.2 Expression type solving

The expression tree is traversed (in a depth-first search manner) in order to deduce its type.
As soon as a variable, constant or literal is found, the expression takes its type. If the expres-
sion only contains numbers (e.g., 2 + 3 * 4), the inferred type will be a rational arithmetic
expression (and not the int type).

IMITATOR does not support implicit conversion. In other words, r + i + 3, where r is
a rational and i is an int, is not allowed. Neither is allowed r := i.

If an expression mixes different types, a type error is risen before the start of the algorithm.

59

IMITATOR user manual

7.3.3 Literal number type inference

The types of literal numbers are automatically resolved during the semantic analysis and
more precisely during the type checking step. Once an expression type is resolved, all lit-
eral numbers within this expression are automatically typed as the numerical type held by
the expression.

For example, in the following update expression b := True & i < 3 + 1 with i :

int, literal numbers 3 and 1 will be automatically typed as an int.

7.3.4 Type conversion

As said previously, there is no implicit conversion of variables, constants or literals from one
type to another type. All expressions hold exactly one type and cannot mix different types.
However, it is possible to convert an expression to another type using built-in conversion
functions:

• rational_of_int: converts an int expression to a rational one.

7.4 Installation

This document does not aim at explaining how to install IMITATOR. See the installation in-
formation available on the website for the most up-to-date information.

Binaries and source code packages are available on IMITATOR’s Web page [IMI-Web].
Several standalone binaries are provided for Linux systems, that require no installation.

60

Chapter 8

List of options

The options available for IMITATOR are explained in the following.
Note that some more options are available in the current implementation of IMITATOR.

If these options are not listed here, they are experimental (or deprecated). If needed, more
information can be obtained by contacting the IMITATOR team.

-acyclic (default: disabled) Does not test if a new state was already encountered. Without
this option, when IMITATOR encounters a new state, it checks if it has been encountered
before. This test may be time consuming for systems with a high number of reachable states.
For acyclic systems, all traces pass only once by a given location. As a consequence, there are
no cycles, so there should be no need to check if a given state has been encountered before.
This is the main purpose of this option.

However, be aware that, even for acyclic systems, several (different) traces can pass by the
same state. In such a case, if the -acyclic option is activated, IMITATORwill compute twice
the states after the state common to the two traces. As a consequence, it is all but sure that
activating this option will lead to an increase of speed.

Note also that activating this option for non-acyclic systems may lead to an infinite loop
in IMITATOR.

-cart-tiles-limit <limit> (default: none) In cartography algorithm, set up a maxi-
mum of tiles to be generated by the algorithm.

-cart-time-limit <limit> (default: none) In cartography algorithm, set up a global
time limit to the algorithm. In contrast, -time-limit is applied to each call to the inverse
method.

-comparison (default: depending on the algorithm) This option specifies how to compare
the constraint of a newly computed symbolic state with the constraints of the formerly com-
puted symbolic states. Possible values are:

none : Does not test if a new state was already encountered. To be set to this value only if
the state space is a tree with all states being different (otherwise analysis may enter an
infinite loop and never terminate).

61

IMITATOR user manual

equality Test the equality of the constraints.

inclusion Consider an inclusion of parametric zone instead of the equality when comput-
ing the successors of a set of states. In other terms, when encountering a new state,
IMITATOR checks whether an old state shares the same discrete part (location and
value of the discrete variables) and is such that the new state constraint is included
into (i.e., is smaller than or equal to) the old state constraint; if so, IMITATOR discards
this “new” state.

including When encountering a new state, IMITATOR checks whether an old state shares
the same discrete part (location and value of the discrete variables) and is such that the
new state constraint includes (i.e., is larger than or equal to) the old state constraint; if
so, IMITATOR replaces the old state with the new state, and explores it further.

doubleinclusion Consider a bidirectional inclusion of parametric zones when computing
the successors of a set of states. When this value is enabled, it suffices that a previous
state with the same location and a constraint greater than or equal to (resp. smaller or
equal to) the constraint of the new state has been encountered to discard the new state
(resp. the old state, which is replaced by the new one).

It seems that, although less states are computed, this value is less efficient than
-comparison inclusion (in part due to the extra inclusion checks required by
-comparison doubleinclusion). This explains why this option, while preserving the
correctness, is not default for reachability algorithms.

In reachability algorithms (Sections 4.2 to 4.7 and 4.13), -comparison inclusion is
usually enabled by default; however, for loop synthesis algorithms (Sections 4.9 and 4.10),
-comparison equality is used, as inclusion may introduce spurious cycles. See Table 4.2
for the default behavior of algorithms w.r.t. this option.

-contributors Print the list of contributors and exits.

-cycle-algo (default: NDFS) For cycle synthesis algorithms (Section 4.9), call either BFS
(breadth-first search) or NDFS (nested depth-first search), with some additional options in
the latter case. See -layer, -subsumption, -pending-order, -depth-init, -depth-limit,
-depth-step for possible additional options.

-depth-init <initial_depth> (default: none) For the cycle detection using NDFS (Sec-
tion 4.9.1.2), setting -depth-init allows for running iteratively NDFS, starting with depth
limit <initial_depth> and increasing this limit at each iteration.

-depth-limit <limit> (default: none) Limits the depth of the exploration of the state
space. In the cartography mode, this option gives a limit to each call to the inverse method.
Setting -depth-limit guarantees the termination of any execution of IMITATOR, but not
necessarily the correctness of the algorithms.

62

IMITATOR user manual

-depth-step (default: 1) For the cycle detection using NDFS (Section 4.9.1.2),
-depth-step is used for iterative NDFS: it indicates the step between two iterations.

-distributed <mode> (default: not distributed) Distributed version of the behavioral
cartography. Various distribution modes are possible:

no Non-distributed mode (default)

static Static domain decomposition [ACN15];

sequential Master-worker scheme with sequential point distribution [ACE14]

randomXX Master-worker scheme with random point distribution (e.g., random5 or
random10); after XX successive unsuccessful attempts (where the generated point is al-
ready covered), the algorithm will switch to an exhaustive sequential iteration [ACE14]

shuffle Master-worker scheme with shuffle point distribution [ACN15]

dynamic Master-worker dynamic subdomain decomposition [ACN15]

-draw-cart (default: off) After execution of the behavioral cartography or EFsynth, plots
the generated zones as a .png file. This will generate file model_cart.png. If the model con-
tains more than two parameters, then -draw-cart will plot the projection of the generated
zones on the first two parameters of the model (or on the two varying parameters in the case
of BC).

This option makes use of the external utility graph, which is part of the GNU plotting
utils, available on most Linux platforms. The generated files will be located in the current
directory, unless option -output-prefix is used.

Additional useful options are -draw-cart-x-min, -draw-cart-x-max,
-draw-cart-y-min, -draw-cart-y-max to tune the values of the axes, and
-graphics-source to keep the plot source.

-draw-cart-x-min (default: off) Set minimum value for the x axis when plotting the car-
tography (not entirely functional in all situations yet).

-draw-cart-x-max (default: off) Set maximum value for the x axis when plotting the car-
tography (not entirely functional in all situations yet).

-draw-cart-y-min (default: off) Set minimum value for the y axis when plotting the car-
tography (not entirely functional in all situations yet).

-draw-cart-y-max (default: off) Set maximum value for the y axis when plotting the car-
tography (not entirely functional in all situations yet).

63

IMITATOR user manual

-draw-statespace (default: none) Graphical output using dot. In this case, IMITATOR
outputs a file <input_file>.pdf, which is a graphical output in the PDF format, generated
using dot, corresponding to the state space.

Note that the path and the name of those two files can be changed using the
-output-prefix option.

Three values for this option are allowed:

• Use value undetailed for the structure only (no location names): does not provide
detailed information on the local locations of the composed IPTA, and instead only
outputs the state id. Enabling the option with this value instead of -draw-statespace
normalmay yield a smaller graph, which is useful when generating relatively large state
spaces.

• Use value normal for location names.

• Use value full for location names and constraints. This provides very detailed infor-
mation, by adding to the right of the local locations of the composed IPTA the associ-
ated constraint as well. In addition, the parametric constraint is printed too. Enabling
the option with this value instead of -draw-statespace normal will yield a very large
graph, and it is useful (and readable) mostly for very small state spaces.

-dynamic-elimination (default: disabled) Dynamic elimination of clocks that are known
to not be used in the future of the current state [And13a]. That is, IMITATOR deletes from the
symbolic states all clocks that will not be used in a guard or an invariant until their next reset.
This technique uses some basic static analysis of the IPTA composing the NIPTA.

-expl-order Exploration orders are considered for standard reachability analysis (and
counterexample analysis, using #witness), and are documented in [ANP17].

• -expl-order layerBFS: layer-based breadth-first search (default);

• -expl-order queueBFS: queue-based breadth-first search;

• -expl-order queueBFSRS: queue-based breadth-first search with ranking system

• -expl-order queueBFSPRIOR: priority-based BFS with ranking system.

This framework remains relatively experimental.

-extrapolation (default: disabled) Clock extrapolation was defined in a number of pa-
pers for timed automata (e.g., [Beh+03; Beh+06; Li09; Tri09]), and then extended to paramet-
ric timed automata in [ALR15; AA22].

Values for this option are:

none no extrapolation
M simple M-extrapolation (maximum constant computed for each clock)
Mglobal simple M-extrapolation with single maximum constant for all clocks
LU LU-extrapolation (constants computed for each clock)
LUglobal LU-extrapolation with single maximum constants for all clocks

64

IMITATOR user manual

Warning 11 (syntax restriction). Extrapolation can be used only when all guards and
invariants are “simple clock guards”, i.e., of the form x ./ lt, where lt is a linear term
over P . In other words, no discrete variables nor linear constraints over the clocks
(which notably excludes “diagonal” constraints) are allowed.

-graphics-source (default: disabled) Keep file(s) used for generating graphical output
(e.g., state space, cartography); these files are otherwise deleted after the generation of the
graphics.

-imi2HyTech (default: disabled) Translates the input model to a HYTECH model, and exits.
See Section 6.4 for details.

-imi2IMI (default: disabled) Regenerates the model into an IMITATORmodel, and exits.

-imi2JPG (default: disabled) Translates the input model to a graphical, human-readable
form (in .jpg format), and exits.

-imi2PDF (default: disabled) Translates the input model to a graphical, human-readable
form (in .pdf format), and exits.

-imi2PNG (default: disabled) Translates the input model to a graphical, human-readable
form (in .png format), and exits.

-imi2TikZ (default: disabled) Translates the input model to a LATEX representation of the
model (using the tikz package) without performing any analysis, and exits. Note that node
positioning is not (much) supported, so may want to edit manually some positions.

-imi2Uppaal (default: disabled) Translates the input model to a UPPAAL model, and exits.
See Section 6.3 for details.

-layer (default: disabled) For the cycle detection using NDFS (Section 4.9.1.2), consider
layered NDFS [NPV18].

-no-layer (default: disabled) For the cycle detection using NDFS (Section 4.9.1.2), do not
consider layered NDFS [NPV18].

-merge (default: depending on the algorithm) Use the merging techniques of [AFS13;
And+22]. This option is safe (and used by default) for the EFsynth algorithm, and similar
algorithms. However, not all the properties of the inverse method are preserved when using
merging (see [AFS13] for details).

The possible values for this option are:

65

IMITATOR user manual

none No merging even if the algorithm requires it by default
onthefly Update the statespace by deleting the merged state and updating its transi-

tions in situ [And+22]
reconstruct Update the statespace with a copy of the reachable part [And+22]
2.12 Former version of merging in IMITATOR 2.12 [AFS13] reimplemented into

IMITATOR 3.3

See Table 4.2 for the default value of this option depending on the algorithm.

-merge-candidates (default: depending on the algorithm) Use the merging technique
of [And+22] and specify the candidates to merge with a state. The value of option -merge

must be different from none for this option to be enabled.
The possible values for this option are:

ordered First within the queue, and then the visited states
queue Only the states in the queue
visited All the visited states

See Table 4.2 for the default value of this option depending on the algorithm.

-merge-update (default: depending on the algorithm) Use the merging technique
of [And+22] and specify when to update the statespace. The value of option -merge must
be different from none for this option to be enabled.

The possible values for this option are:

candidates After having processed the whole candidate list of a state
merge After each successful merge with each sibling

See Table 4.2 for the default value of this option depending on the algorithm.

-merge-restart (default: depending on the algorithm) Use the merging technique
of [And+22] and set if a state can be merged to one of its siblings, if the search through all
candidate siblings is restarted. The value of option -merge must be different from none for
this option to be enabled.

The possible values for this option are:

on

off

See Table 4.2 for the default value of this option depending on the algorithm.

-mode (default: none) When executing IMITATOR without a property, i.e., in a special
mode.

The possible values for this option are:

66

IMITATOR user manual

checksyntax Simple syntax check and no analysis.
statespace Generation of the entire parametric state space

(see Section 4.15)

-no-acceptfirst (default: disabled) For the cycle detection using NDFS (Section 4.9.1.2),
do not put accepting states at the head of the successors list.

-no-cumulative-pruning (default: disabled) In EFsynth and BFS-based (accepting) loop
synthesis, no inclusion test of the new states parameter constraints in the already synthesized
constraint is performed when this option is enabled. Otherwise, by default, the algorithm
checks whether a new state parameter constraint is included into the already computed pa-
rameter constraint and, if so, cuts the branch. This can save time by cutting branches, but can
also slow down the analysis for very complex constraints with dozens or hundreds of disjunc-
tions. This option was designed when using IMITATOR for monitoring or parametric timed
pattern matching, when constraints can contain up to thousands of disjunctions [AHW18].

-no-lookahead (default: disabled) For the cycle detection using NDFS (Section 4.9.1.2),
do not perform a lookahead for finding successors closing an accepting cycle.

-no-random (default: disabled) In the inverse method, no random selection of the π0-
incompatible inequality (select the first found). By default, select an inequality in a random
manner.

-no-var-autoremove (default: disabled) Usually, IMITATOR automatically removes from
the analysis the variables declared in the header, but used nowhere in the IPTAs nor in the
correctness property. Note that a variable updated (to 0 or to any other value) is not con-
sidered used, as long as it is not used elsewhere (i.e., in a guard, an invariant, a value to be
updated to, a property. . .). Using -no-var-autoremove prevents IMITATOR from automati-
cally remove these variables.

-nz-method (default: transform) For non-Zeno cycle synthesis (Section 4.10), choose to
either:

• synthesize valuations only for the subset of valuations for which the NIPTA already sat-
isfies the CUB assumption (-nz-method check), or

• transform the NIPTA into an equivalent CUB-NIPTA (-nz-method transform).

-output-float (default: disabled) Convert (exact-valued) discrete rational variables into
(possibly approximated) floats in all outputs.

-output-prefix (default: <input_file>) Set the path prefix for all generated files. The
path can be either relative (to the path to the ./imitator binary) or absolute, and must be
followed by the file name.

Examples:

67

IMITATOR user manual

• -output-prefix log

• -output-prefix ./log

• -output-prefix /home/imitator/outputs

By default, the path prefix is the current directory, i.e., where the user is (therefore not
necessarily the model directory).

-no-output-result (default: enabled) Does not write the result of the analysis to a file.
By default, a file named <input_file>.res is created using a normalized syntax, that can be
easily parsed, e.g., using an external script.

-pending-order (default: none) For the cycle detection using NDFS (Section 4.9.1.2), de-
fines the ordering strategy used for the pending list in NDFS exploration with layers. The
possible values are:

none the states are added to the pending list without specific policy (default option).
accepting the accepting states are added at the head of the pending list, the others at the

tail.
param the states are added to the list on the basis of a largest projection of zone on

parameters first.
zone the states are added to the list on the basis of a largest zone first.

-recompute-green (default: disabled) For the cycle detection using NDFS (Section 4.9.1.2)
with iterative deepening, force re-exploration of green states when encountered on a shorter
path.

-states-description (default: disabled) Generates a file <input_file>.states de-
scribing the reachable states in plain text (value of the location, of the discrete variables,
associated constraint, and its projection onto the parameters).

-states-limit (default: none) Will try to stop after reaching this number of states. Warn-
ing: the program may have to first finish computing the current iteration (i.e., the exploration
of the state space at the current depth) before stopping.

-statistics (default: disabled) Print info on number of calls to PPL, and other statistics
about memory and time. Warning: enabling this option may slightly slow down the analysis,
and will certainly induce some extra computational time at the end.

-subsumption (default: enabled for NDFS) For the cycle detection using NDFS (Sec-
tion 4.9.1.2), use subsumption [NPV18].

-no-subsumption (default: enabled for NDFS) For the cycle detection using NDFS (Sec-
tion 4.9.1.2), do not use subsumption [NPV18].

68

IMITATOR user manual

-sync-auto-detect (default: disabled) IMITATOR considers that all the IPTA declaring a
given action must be able to synchronize all together, so that the synchronization can hap-
pen. By default, IMITATOR considers that the actions declared in an IPTA are those declared
in the synclabs section. Therefore, if an action is declared but never used in (at least) one
IPTA, this label will never be synchronized in the execution.1

The option -sync-auto-detect allows to detect automatically the actions in each IPTA:
the actions declared in the synclabs section are ignored, and IMITATOR considers as de-
clared actions only the actions really used in this IPTA.

-tiles-files (default: disabled) In cartography, generates the required files for each tile
(i.e., the .res files, as well as the graphical cartography files whenever -draw-cart is en-
abled).

-time-elapsing-after (default: disabled) When computing a new symbolic state, com-
pute the time elapsing before taking the transition instead of after.

-time-limit <limit> (default: none) Try to limit the execution time (the value <limit>

is given in seconds). Note that, in the current version of IMITATOR, the test of time limit is
performed at the end of an iteration only (i.e., at the end of the exploration of the state space
at the current depth). In the cartography mode, this option represents a global time limit, not
a limit for each call to the inverse method.

-timed (default: disabled) Add a timing information to each shell output of the program.

-verbose (default: standard) Give some debugging information, that may also be useful
to have more details on the way IMITATOR works. The admissible values for -verbose are
given below:

mute No output (the result is still output to an external file)
warnings Prints only warnings
standard Give little information (number of steps, computation time)
experiments Give some additional information, typically enough for experiments
low Give some additional information on what happens internally
medium Give quite a lot of information
high Give much information
total Give really too much information

-version Prints IMITATOR header including the version number and exits.

1In such a case, action label is actually completely removed before the execution, in order to optimize the
execution, and the user is warned of this removal.

69

Chapter 9

Grammar

We give in this chapter the complete grammar of input models and properties for IMITATOR.

9.1 Variable names

A variable name (represented by <name> in the grammar below) is a string starting with a
letter (small or capital), and followed by a set of letters, digits and underscores (“_”). By letter
we mean the 26 letters of the Latin alphabet, without any diacritic mark.

The set of clock names, parameter names and discrete variable names must (quite natu-
rally) be disjoint. However, the sets of IPTA names, location names, action names, and vari-
able names are not required to be disjoint. That is, the same name can be given to a clock, an
automaton, an action and a location.

Furthermore, the names of the sets of locations of various IPTA are not-necessarily dis-
joint either: that is, a same name can be given to two different locations in two different IPTA
(and they still represent two different things).

9.2 Grammar of the model

The IMITATOR input model is described by the following grammar. Non-terminals appear
〈within chevrons〉. A non-terminal followed by two colons is defined by the list of immediately
following non-blank lines, each of which represents a legal expansion. Input characters of
terminals appear in typewritter font. The meta symbol ε denotes the empty string.

〈imitator_input〉 ::
〈automata_descriptions〉 〈init〉
We define each of those two components below.

9.2.1 Automata descriptions

〈include_file_list〉 ::
〈include_file〉 〈include_file_list〉

| ε

70

IMITATOR user manual

〈include_file〉 ::
#include "<path>" ;

〈automata_descriptions〉 ::
〈include_file_list〉 〈declarations〉 〈automata〉

〈declarations〉 ::
var 〈var_lists〉

| ε

〈var_lists〉 ::
〈var_list〉 : 〈var_type〉 ; 〈var_lists〉

| ε

〈var_list〉 ::
<name>

| <name> = 〈global_expression〉
| <name> , 〈var_list〉
| <name> = 〈global_expression〉 , 〈var_list〉

〈var_type〉 ::
〈var_type_discrete〉

| clock

| parameter

〈var_type_discrete〉 ::
〈var_type_scalar〉

| 〈var_type〉 array(〈arithmetic_expression〉)
| 〈var_type〉 list
| 〈var_type〉 stack
| 〈var_type〉 queue

〈var_type_scalar〉 ::
| binary (〈pos_integer〉)
| bool

| constant

| discrete

| int

| rational

〈automata〉 ::
〈automaton〉 〈automata〉

| 〈include_file〉 〈automata〉
| ε

〈automaton〉 ::
automaton <name> 〈prolog〉 〈locations〉 end

71

IMITATOR user manual

〈prolog〉 ::
| 〈sync_labels〉
| ε

〈sync_labels〉 ::
synclabs : 〈name_list〉 ;

〈name_list〉 ::
〈name_nonempty_list〉

| ε

〈name_nonempty_list〉 ::
<name> , 〈name_nonempty_list〉

| <name>

〈locations〉 ::
〈location〉 〈locations〉

| ε

〈location_attribute〉 ::
| ε

| urgent

| accepting

| accepting urgent

| urgent accepting

〈location〉 ::
〈location_attribute〉 loc <name> : invariant 〈nonlinear_convex_predicate〉

〈stopw_and_flow_opt〉 〈transitions〉

〈stopw_and_flow_opt〉 ::
〈stopwatches〉 〈flow〉

| 〈flow〉 〈stopwatches〉
| 〈flow〉
| 〈stopwatches〉
| ε

〈flow〉 ::
flow { 〈flow_list〉 }

〈flow_list〉 ::
〈flow_nonempty_list〉

| ε

〈flow_nonempty_list〉 ::
〈single_flow〉 , 〈flow_nonempty_list〉

| 〈single_flow〉 〈comma_opt〉

72

IMITATOR user manual

〈single_flow〉 ::
<name>' = 〈constant_arithmetic_expr〉

〈stopwatches〉 ::
stop{ 〈name_list〉 }

〈transitions〉 ::
〈transition〉 〈transitions〉

| ε

〈transition〉 ::
when 〈nonlinear_convex_predicate〉 〈update_synchronization〉 goto <name> ;

〈update_synchronization〉 ::
〈updates〉

| 〈syn_label〉
| 〈updates〉 〈syn_label〉
| 〈syn_label〉 〈updates〉
| ε

〈updates〉 ::
do { 〈seq_then_updates〉 }

〈seq_then_updates〉 ::
seq 〈update_seq_nonempty_list〉 〈then_updates〉

| 〈update_list〉

〈then_updates〉 ::
then 〈update_list〉 [end]

| ε

〈update_list〉 ::
〈update_nonempty_list〉

| ε

〈update_nonempty_list〉 ::
〈update〉 , 〈update_list〉

| 〈condition_update〉 , 〈update_list〉
| 〈update〉
| 〈condition_update〉

〈update_seq_nonempty_list〉 ::
〈update〉 ; 〈update_list〉

| 〈condition_update〉 ; 〈update_list〉
| 〈update〉
| 〈condition_update〉

〈update〉 ::
<name> := 〈global_expression〉

73

IMITATOR user manual

〈normal_update_list〉 ::
〈update〉 , 〈normal_update_list〉

| 〈update〉
| ε

〈conditon_update〉 ::
if (〈boolean_expression〉) then 〈normal_update_list〉 end

| if (〈boolean_expression〉) then 〈normal_update_list〉 else 〈normal_update_list〉 end

〈syn_label〉 ::
sync <name>

〈global_expression〉 ::
〈arithmetic_expression〉

| 〈binary_word_expression〉
| 〈boolean_expression〉
| 〈array_expression〉
| 〈list_expression〉
| 〈stack_expression〉
| 〈queue_expression〉

〈array_expression〉 ::
(〈array_expression〉)

| array_append (〈array_expression〉 , 〈array_expression〉)
| array_length (〈array_expression〉)
| array_mem (〈global_expression〉 , 〈array_expression〉)
| <name>

| 〈literal_array〉

〈list_expression〉 ::
(〈list_expression〉)

| list_cons (〈global_expression〉 , 〈list_expression〉)
| list_hd (〈list_expression〉)
| list_is_empty (〈list_expression〉)
| list_length (〈list_expression〉)
| list_mem (〈global_expression〉 , 〈list_expression〉)
| list_rev (〈list_expression〉)
| list_tl (〈list_expression〉)
| <name>

| 〈literal_list〉

〈stack_expression〉 ::

74

IMITATOR user manual

(〈stack_expression〉)
| stack_push (〈global_expression〉 , 〈stack_expression〉)
| stack_pop (〈stack_expression〉)
| stack_top (〈stack_expression〉)
| stack_clear (〈stack_expression〉)
| stack_is_empty (〈stack_expression〉)
| stack_length (〈stack_expression〉)
| <name>

| stack()

〈queue_expression〉 ::
(〈queue_expression〉)

| queue_push (〈global_expression〉 , 〈queue_expression〉)
| queue_pop (〈queue_expression〉)
| queue_top (〈queue_expression〉)
| queue_clear (〈queue_expression〉)
| queue_is_empty (〈queue_expression〉)
| queue_length (〈queue_expression〉)
| <name>

| queue()

〈literal_array〉 ::
[]

| [〈literal_expression_fol〉]

〈literal_expression_fol〉 ::
〈global_expression〉 , 〈literal_expression_fol〉

| 〈global_expression〉

〈array_access〉 ::
〈array_expression〉 [〈arithmetic_expression〉]

| <name> [〈arithmetic_expression〉]

〈literal_list〉 ::
list([])

| list([〈literal_expression_fol〉])

〈binary_word_expression〉 ::

75

IMITATOR user manual

(〈binary_word_expression〉)
| shift_left (〈binary_word_expression〉 , 〈arithmetic_expression〉)
| shift_right (〈binary_word_expression〉 , 〈arithmetic_expression〉)
| fill_left (〈binary_word_expression〉 , 〈arithmetic_expression〉)
| fill_right (〈binary_word_expression〉 , 〈arithmetic_expression〉)
| log_and (〈binary_word_expression〉 , 〈binary_word_expression〉)
| log_or (〈binary_word_expression〉 , 〈binary_word_expression〉)
| log_xor (〈binary_word_expression〉 , 〈binary_word_expression〉)
| log_not (〈binary_word_expression〉)
| 〈array_access〉
| <name>

| <binary_word>

〈boolean_expression〉 ::
〈boolean_expression〉 & 〈boolean_expression〉

| 〈boolean_expression〉 | 〈boolean_expression〉
| 〈arithmetic_expression〉 〈relop〉 〈arithmetic_expression〉
| 〈discrete_boolean_expression〉

〈discrete_boolean_expression〉 ::
〈arithmetic_expression〉 〈relop〉 〈arithmetic_expression〉

| 〈arithmetic_expression〉 in [〈arithmetic_expression〉 , 〈arithmetic_expression〉]
| (〈boolean_expression〉)
| not (〈boolean_expression〉)
| 〈array_access〉
| <name>

| True

| False

〈arithmetic_expression〉 ::
〈arithmetic_term〉

| 〈arithmetic_expression〉 + 〈arithmetic_term〉
| 〈arithmetic_expression〉 - 〈arithmetic_term〉

〈arithmetic_term〉 ::
〈arithmetic_factor〉

| 〈rational〉 <name>
| 〈arithmetic_term〉 * 〈arithmetic_factor〉
| 〈arithmetic_term〉 / 〈arithmetic_factor〉
| - 〈arithmetic_term〉

〈arithmetic_factor〉 ::
(〈arithmetic_expression〉)

| pow(〈arithmetic_expression〉, 〈arithmetic_expression〉)
| rational_of_int(〈arithmetic_expression〉)
| 〈array_access〉
| <name>

| 〈rational〉

76

IMITATOR user manual

〈convex_predicate〉 ::
& 〈convex_predicate_fol〉

| 〈convex_predicate_fol〉

〈convex_predicate_fol〉 ::
〈linear_constraint〉 & 〈convex_predicate〉

| 〈linear_constraint〉

〈nonlinear_convex_predicate〉 ::
& 〈nonlinear_convex_predicate_fol〉

| 〈nonlinear_convex_predicate_fol〉

〈nonlinear_convex_predicate_fol〉 ::
〈nonlinear_constraint〉 & 〈nonlinear_convex_predicate〉

| 〈nonlinear_constraint〉

〈linear_constraint〉 ::
〈linear_expression〉 〈relop〉 〈linear_expression〉

| True

| False

〈nonlinear_constraint〉 ::
〈discrete_boolean_expression〉

| True

| False

〈relop〉 ::
<

| <=

| =

| <>

| >=

| >

〈linear_expression〉 ::
〈linear_term〉

| 〈linear_expression〉 + 〈linear_term〉
| 〈linear_expression〉 - 〈linear_term〉

〈linear_term〉 ::
〈rational〉

| 〈rational〉 <name>
| 〈rational〉 * <name>
| - <name>

| <name>

| (〈linear_term〉)

77

IMITATOR user manual

〈rational〉 ::
〈integer〉

| 〈float〉
| 〈integer〉 / 〈pos_integer〉

〈integer〉 ::
〈pos_integer〉

| - 〈pos_integer〉

〈pos_integer〉 ::
<int>

〈float〉 ::
〈pos_float〉

| - 〈pos_float〉

〈pos_float〉 ::
<float>

9.2.2 Initial state

〈init〉 ::
init := { 〈init_discrete_continuous_definition〉 }

〈init_discrete_continuous_definition〉 ::
〈init_discrete_definition〉 〈init_continuous_definition〉

| 〈init_continuous_definition〉 〈init_discrete_definition〉

〈init_discrete_definition〉 ::
discrete = 〈init_discrete_expression〉 ;

| ε

〈init_discrete_expression〉 ::
, 〈init_discrete_expression_nonempty_list〉

| 〈init_discrete_expression_nonempty_list〉
| ε

〈init_discrete_expression_nonempty_list〉 ::
〈init_discrete_state_predicate〉 , 〈init_discrete_expression_nonempty_list〉

| 〈init_discrete_state_predicate〉
| 〈init_discrete_state_predicate〉 ,

〈init_discrete_state_predicate〉 ::
<name> := 〈global_expression〉

| 〈init_discrete_loc_predicate〉
| (〈init_discrete_state_predicate〉)

78

IMITATOR user manual

〈init_discrete_loc_predicate〉 ::
loc[<name>] := <name>

| <name> is in <name>

〈init_continuous_definition〉 ::
continuous = 〈region_expression〉 ;

| ε

〈region_expression〉 ::
& 〈region_expression_fol〉

| 〈region_expression_fol〉

〈region_expression_fol〉 ::
〈linear_constraint〉

| (〈region_expression_fol〉)
| 〈region_expression_fol〉 & 〈region_expression_fol〉

9.3 Grammar of the property file

〈property_definition〉 ::
〈property_kw_opt〉 〈quantified_property〉

〈property_kw_opt〉 ::
property :=

| ε

〈quantified_property〉 ::
#synth 〈property〉 〈semicolon_opt〉 〈projection_definition_opt〉

| #exhibit 〈property〉 〈semicolon_opt〉 〈projection_definition_opt〉
| #witness 〈property〉 〈semicolon_opt〉 〈projection_definition_opt〉

〈property〉 ::

79

IMITATOR user manual

EF 〈state_predicate〉
| AGnot 〈state_predicate〉
| EFpmin (〈state_predicate〉 , <name>)
| EFpmax (〈state_predicate〉 , <name>)
| EFtmin 〈state_predicate〉
| Cycle

| Loop /* alias for Cycle */

| CycleThrough 〈state_predicate_list〉
| LoopThrough 〈state_predicate_list〉 /* alias for CycleThrough */

| NZCycle

| DeadlockFree

| IM (〈parameter_valuation〉)
| InverseMethod (〈parameter_valuation〉) /* alias for IM */

| TracePreservation (〈parameter_valuation〉) /* alias for IM */

| IMconvex (〈parameter_valuation〉)
| IMK (〈parameter_valuation〉)
| IMunion (〈parameter_valuation〉)
| PRP (〈parameter_valuation〉)
| BCcover (〈hyper_rectangle〉 〈step_opt〉)
| BCshuffle (〈hyper_rectangle〉 〈step_opt〉)
| BCrandom (〈hyper_rectangle〉 , 〈pos_integer〉 〈step_opt〉)
| BCrandomseq (〈hyper_rectangle〉 , 〈pos_integer〉 〈step_opt〉)
| PRPC (〈state_predicate〉 , 〈hyper_rectangle〉 〈step_opt〉)
| pattern(〈pattern〉)

〈pattern〉 ::
| if <name> then <name> has happened before

| everytime <name> then <name> has happened before

| everytime <name> then <name> has happened once before

| <name> within 〈linear_expression〉
| if <name> then <name> has happened within 〈linear_expression〉 before

| everytime <name> then <name> has happened within 〈linear_expression〉 before

| everytime <name> then <name> has happened once within 〈linear_expression〉 before

| if <name> then eventually <name> within 〈linear_expression〉
| everytime <name> then eventually <name> within 〈linear_expression〉
| everytime <name> then eventually <name> within 〈linear_expression〉 once before next

| sequence 〈var_list〉
| sequence (〈var_list〉)
| always sequence 〈var_list〉
| always sequence (〈var_list〉)

〈state_predicate_list〉 ::
| 〈non_empty_state_predicate_list〉
| ε

〈non_empty_state_predicate_list〉 ::

80

IMITATOR user manual

| 〈state_predicate〉 , 〈non_empty_state_predicate_list〉
| 〈state_predicate〉 〈comma_opt〉

〈state_predicate〉 ::
〈state_predicate〉 || 〈state_predicate〉

| 〈state_predicate_term〉
| True

| False

| accepting

| ε

〈state_predicate_term〉 ::
〈state_predicate_term〉 & 〈state_predicate_term〉

| 〈state_predicate_factor〉
〈state_predicate_factor〉 ::

〈simple_predicate〉
| not 〈state_predicate_factor〉
| (〈state_predicate〉)

〈simple_predicate〉 ::
〈discrete_boolean_predicate〉

| 〈loc_predicate〉
〈loc_predicate〉 ::

loc[<name>] = <name>

| <name> is in <name>

| loc[<name>] <> <name>

| <name> is not in <name>

〈discrete_boolean_predicate〉 ::
〈discrete_expression〉 〈op_bool〉 〈discrete_expression〉

| 〈discrete_expression〉 in [〈discrete_expression〉 , 〈discrete_expression〉]
| 〈discrete_expression〉 in [〈discrete_expression〉 .. 〈discrete_expression〉]

〈discrete_expression〉 ::
〈discrete_expression〉 + 〈discrete_term〉

| 〈discrete_expression〉 - 〈discrete_term〉
| 〈discrete_term〉

〈discrete_term〉 ::
〈discrete_term〉 * 〈discrete_factor〉

| 〈discrete_term〉 / 〈discrete_factor〉
| 〈discrete_factor〉

〈discrete_factor〉 ::
<name>

| 〈positive_rational〉
| (〈discrete_expression〉)
| - 〈discrete_factor〉

81

IMITATOR user manual

〈op_bool〉 ::
<

| <=

| =

| <>

| >=

| >

〈positive_rational〉 ::
〈pos_integer〉

| 〈pos_float〉

〈projection_definition_opt〉 ::
projectresult(〈name_nonempty_list〉) 〈semicolon_opt〉

| ε

〈parameter_valuation〉 ::
〈parameter_assignments〉 〈semicolon_opt〉

〈parameter_assignments〉 ::
〈parameter_assignment〉 〈parameter_assignments〉

| ε

〈parameter_assignment〉 ::
〈and_opt〉 <name> = 〈constant_arithmetic_expr〉 〈comma_opt〉

〈hyper_rectangle〉 ::
〈rectangle_parameter_assignments〉 〈semicolon_opt〉

〈rectangle_parameter_assignments〉 ::
〈rectangle_parameter_assignment〉 〈rectangle_parameter_assignments〉

| ε

〈rectangle_parameter_assignment〉 ::
〈and_opt〉 <name> = 〈constant_arithmetic_expr〉 .. 〈constant_arithmetic_expr〉 〈comma_opt〉

| 〈and_opt〉 <name> = 〈constant_arithmetic_expr〉 〈comma_opt〉

〈constant_arithmetic_expr〉 ::
〈constant_arithmetic_expr〉 + 〈constant_expr_mult〉

| 〈constant_arithmetic_expr〉 - 〈constant_expr_mult〉
| 〈constant_expr_mult〉

〈constant_expr_mult〉 ::
〈constant_expr_mult〉 * 〈constant_neg_atom〉

| 〈constant_expr_mult〉 / 〈constant_neg_atom〉
| 〈constant_neg_atom〉

82

IMITATOR user manual

〈constant_neg_atom〉 ::
| 〈constant_atom〉
| - 〈constant_atom〉

〈constant_atom〉 ::
| (〈constant_arithmetic_expr〉)
| 〈rational〉

〈step_opt〉 ::
| , step= 〈pos_rational〉
| ε

〈and_opt〉 ::
| &

| ε

〈comma_opt〉 ::
| ,

| ε

〈semicolon_opt〉 ::
| ;

| ε

Remark 9.1. In the parameter valuation definition (〈parameter_valuation〉), all param-
eters of the model must be given a valuation; but the definition of the parameter valua-
tion may also use names that do not appear in the model (a warning will just be issued).

Remark 9.2. In the hyper-rectangle definition (〈hyper_rectangle〉), all parameters of the
model must be given an interval (possibly punctual); again, the definition of the hyper-
rectangle may also use names that do not appear in the model (a warning will just be
issued).

9.4 Reserved words

The following words are reserved keywords and cannot be used as names for automata, vari-
ables, actions or locations.

#exhibit

#include

#synth

#witness

accepting

always

and

array_append

array_length

array_mem

automatically_generated_observer

automatically_generated_x_obs

83

IMITATOR user manual

automaton

before

binary

clock

constant

discrete

do

else

end

eventually

everytime

False

fill_left

fill_right

flow

goto

happened

has

if

in

init

initially

invariant

is

let

list_cons

list_hd

list_is_empty

list_length

list_mem

list_rev

list_tl

loc

logand

lognot

logor

logxor

next

nosync_obs

not

once

or

parameter

pow

projectresult

property

queue_clear

queue_is_empty

queue_length

queue_pop

queue_push

queue_top

rational_of_int

seq

sequence

shift_left

shift_right

special_0_clock

stack_clear

stack_is_empty

stack_length

stack_pop

stack_push

stack_top

step

stop

sync

synclabs

then

True

urgent

var

wait

when

while

within

84

Chapter 10

Missing features

Although we try to make IMITATOR as complete as possible, it misses some features, not
implemented due to lack of time (contributors are welcome!) or due to complexity, or to
keep the tool consistent. We enumerate in the following what seems to us to be the “most
missing” features and, when applicable, we give hints to overcome these limitations.

10.1 ASAP transitions

ASAP (as soon as possible) transitions are transitions that can be taken as soon as all IPTA
synchronizing with this transition can execute their local transition. This is different from
urgent transitions, that must be taken in 0 time. Here, time can elapse, but not after all IPTA
are ready to execute their local transition.

This is not supported by IMITATOR.

10.2 Parameterized models

Parameterized models are understood here as models with an arbitrary number of compo-
nents (e.g., Fischer’s mutual exclusion protocol with n processes), that would be instanti-
ated (e.g., n = 15) before performing the analysis. IMITATOR does not currently support
such parameterized models, and one should use copy/paste utilities to instantiate n models.
For complicated models with many processes, we usually write short scripts to generate the
model (a script CSMACDgenerator.py to model the varying part of parameterized models for
the CSMA/CD case study is available on the IMITATOR project on GitHub).

10.3 Other synchronization models

One-to-one synchronization could possibly be simulated by using as many transitions as
pairs of IPTA in the model, although this may make the model rather complex.

Broadcast synchronization (“only the IPTA ready to execute a given transition execute it”)
is not supported. Once more, it could possibly be simulated by using as many transitions as
subsets of IPTA in the model, although this will make the model definitely complex.

85

https://github.com/imitator-model-checker/imitator

IMITATOR user manual

Message passing is not supported. This can be easily simulated using dedicated discrete
variables, that would be read / written in the transition.

10.4 Initial intervals for discrete variables

Discrete variables must be set to a constant rational in the init definition (e.g., i = 0). Set-
ting a variable to an arbitrarily value (e.g., i in [0 .. 10]) is currently not supported. This
can be simulated using an initialization IPTA that nondeterministically sets i to any of the
values, in 0 time so as to not disturb the model.

10.5 Complex updates for discrete variables

So far, discrete variables can only be set to arithmetic expressions in A E (R); hence, assigning
a discrete variable to a clock, or to a parameter, or to any more complex expression, is not
allowed. A reason for this restriction is that the value of the discrete variables would not
anymore be constant (recall that discrete variables are syntactic sugar for locations).

However, this can be (partially) simulated with stopwatches: we can replace a discrete
variable with a clock that is stopped in all locations (i.e., it does not evolve with time), and
that is updated to the desired value (recall from Definition 3.1 that the clock updates allow
assignments to linear expressions over clocks, discrete variables and parameters). However,
in this latter case, the non-linear power of arithmetic expressions (multiplications and divi-
sions between variables) cannot be used anymore.

10.6 Synthesis for L/U-PTA

IMITATOR does not implement specific algorithms for lower-bound / upper-bound PTA
(L/U-PTA). This subclass of PTA, introduced in [Hun+02], constrains parameters to appear ei-
ther always as upper-bounds in inequalities comparing them with clocks, or always as lower-
bounds. L/U-PTA benefit from some decidability results (see e.g., [Hun+02; BL09; JLR15;
AL17; ALM20]); however, exact synthesis seems to be intractable in practice [JLR15; ALR16].
Still, some subclasses for which exact synthesis can be performed were proposed [BL09;
ALR18a].

However, IMITATOR does detect whether an input model is an L/U-PTA, in which case a
message is printed with the list of lower-bounds parameters and upper-bounds parameters.

Remark 10.1. Note that our definition of L/U-PTAs is consistent with that of, e.g., [BL09];
however, we do not consider the constraint of the initial state while checking for the L/U
nature of the model. That is, we refer to as L/U-PTAs even for the constrained L/U-PTAs
of [BL09].

86

Chapter 11

Acknowledgments

Étienne André initiated the development of IMITATOR in 2008, and keeps developing it.
Emmanuelle Encrenaz and Laurent Fribourg have been great supporters of IMITATOR,
on a theoretical point of view, and to find applications both from the literature and real
case studies. Abdelrezzak Bara provided several examples from the hardware literature.
Jeremy Sproston provided examples from the probabilistic community. Bertrand Jeannet
has been of great help on the linking with Apron [JM09] in an early version of IMITATOR.
Ulrich Kühne made several important improvements to IMITATOR, and linked the tool to
PPL. Daphne Dussaud implemented the graphical output of the behavioral cartography. Ro-
main Soulat implemented in part the merging technique [AFS13], and brought several case
studies. Giuseppe Lipari and Sun Youcheng provided examples from the real-time systems
community, and collaborated on several algorithms. Camille Coti, Sami Evangelista and
Nguyễn Hoàng Gia worked on the distributed version of IMITATOR. Nguyễn Hoàng Gia
worked on the non-Zeno synthesis algorithms. Laure Petrucci and Jaco van de Pol imple-
mented an NDFS algorithm. Stéphan Rosse improved a script for comparing results and
speeds of various versions of IMITATOR. Vincent Bloemen implemented the optimal-time
reachability synthesis. Jaime Arias simplified a lot the source code management and imple-
mented new features. Jiří Srba suggested the translation of IMITATOR’s strong broadcast into
UPPAAL. Benjamin Loillier significantly enhanced the syntax, notably allowing new primitive
types (Boolean, int, binary words), and composite types (arrays, lists, stacks, queues). Dy-
lan Marinho reformatted the library of benchmarks [AMP21] and implemented the transla-
tion to JANI. Johan Arcile implemented the extrapolation [AA22].

We acknowledge the help of the PPL [BHZ08] developers for their help with solving several
issues over the years, and more generally for making this very useful library available.

87

Chapter 12

Licensing and credits

IMITATOR license

IMITATOR is free software available under the GNU GPL license.

Contributors

The following people contributed to the development of IMITATOR.
Étienne André 2008 –
Johan Arcile 2021 – 2022
Jaime Arias 2018 –
Vincent Bloemen 2018
Camille Coti 2014
Daphne Dussaud 2010
Sami Evangelista 2014
Ulrich Kühne 2010 – 2011
Benjamin Loillier 2021 –
Dylan Marinho 2021 –
Nguyễn Hoàng Gia 2014 – 2018
Laure Petrucci 2019 –
Jaco van de Pol 2019 –
Romain Soulat 2010 – 2013

The following people contributed to the compiling, testing and packaging facilities.

88

IMITATOR user manual

Corentin Guillevic 2015
Sarah Hadbi 2015
Fabrice Kordon 2015
Alban Linard 2014 – 2015
Stéphane Rosse 2016 – 2017

User manual

This user manual is available under the Creative Commons CC-BY-SA license.

Graphics credits

Version Image Source Author License

IMITATOR Typingmonkey.svg KaterBegemot

2.x versions Stick_of_butter.

jpg

Renee Comet

version 2.7 Andouille-Scheiben.

jpg

Pwagenblast

version 2.8 Schinken-roh.jpg Rainer Zenz

version 2.9 Physalisperuviana.

jpg

Hans B. common-
swiki (assumed?)

version 2.10 méduses tentacules (?)

89

https://commons.wikimedia.org/wiki/File:Typing_monkey.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Stick_of_butter.jpg
https://commons.wikimedia.org/wiki/File:Stick_of_butter.jpg
https://commons.wikimedia.org/wiki/File:Andouille-Scheiben.jpg
https://commons.wikimedia.org/wiki/File:Andouille-Scheiben.jpg
https://creativecommons.org/licenses/by/3.0/
https://commons.wikimedia.org/wiki/File:Schinken-roh.jpg
https://creativecommons.org/licenses/by/3.0/
https://commons.wikimedia.org/wiki/File:Physalis_peruviana.jpg
https://commons.wikimedia.org/wiki/File:Physalis_peruviana.jpg
https://pixabay.com/fr/m%C3%A9duse-tentacules-medusa-marine-154799/
https://creativecommons.org/publicdomain/zero/1.0/

IMITATOR user manual

version 2.11 Véritable Kouign
Amann de
Douarnenez

Haltopub

version 2.12 Photo of a live lobster Junior Libby

version 3.0 French goat’s cheese
Banon cut to show the
inside of the cheese

Tangopaso

3.x versions Swiss cheese vacherin swissboy

version 3.1 artichoke cactus cowboy

version 3.2 Fresh And Sweet
Blueberries

Kathy Zinn

version 3.3 A pile of loose
caramels

Evan-Amos

90

https://commons.wikimedia.org/wiki/File:Kouignamann.JPG
https://commons.wikimedia.org/wiki/File:Kouignamann.JPG
https://commons.wikimedia.org/wiki/File:Kouignamann.JPG
https://publicdomainpictures.net/en/view-image.php?image=39798&picture=lobster
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:Banon2.jpg
https://commons.wikimedia.org/wiki/File:Banon2.jpg
https://commons.wikimedia.org/wiki/File:Banon2.jpg
https://openclipart.org/detail/308414/swiss-cheese-vacherin-swiss-food
https://openclipart.org/detail/291385/artichoke
https://www.publicdomainpictures.net/en/view-image.php?image=117097&picture=fresh-and-sweet-blueberries
https://www.publicdomainpictures.net/en/view-image.php?image=117097&picture=fresh-and-sweet-blueberries
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:Caramels.jpg
https://commons.wikimedia.org/wiki/File:Caramels.jpg
https://creativecommons.org/licenses/by-sa/3.0/

References

[AA22] Johan Arcile and Étienne André. “Zone extrapolations in parametric timed automata”.
In: Proceedings of the 14th NASA Formal Methods Symposium (NFM 2022) (May 24–27,
2022). Ed. by Klaus Havelund, Jyo Deshmukh, and Ivan Perez. Lecture Notes in Com-
puter Science. Caltech, Pasadena, CA, USA: Springer, 2022 (cit. on pp. 64, 87).

[ABL98] Luca Aceto, Augusto Burgueño, and Kim Gulstrand Larsen. “Model Checking via Reach-
ability Testing for Timed Automata”. In: Proceedings of the 4th International Confer-
ence on Tools and Algorithms for Construction and Analysis of Systems TACAS 1998)
(Mar. 28–Apr. 4, 1998). Ed. by Bernhard Steffen. Vol. 1384. Lecture Notes in Computer
Science. Lisbon, Portugal: Springer, 1998, pp. 263–280. ISBN: 3-540-64356-7. DOI: 10.

1007/BFb0054177 (cit. on pp. 10, 38).

[Ace+03] Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim Guldstrand Larsen. “The
power of reachability testing for timed automata”. In: Theoretical Computer Science
300.1-3 (2003), pp. 411–475. DOI: 10.1016/S0304-3975(02)00334-1 (cit. on p. 38).

[Ace+98] Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim Guldstrand Larsen. “The
Power of Reachability Testing for Timed Automata”. In: Proceedings of the 18th Confer-
ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
1998) (Dec. 17–19, 1998). Ed. by Vikraman Arvind and Ramaswamy Ramanujam.
Vol. 1530. Lecture Notes in Computer Science. Chennai, India: Springer, 1998, pp. 245–
256. ISBN: 3-540-65384-8. DOI: 10.1007/b71635 (cit. on pp. 10, 38).

[ACE14] Étienne André, Camille Coti, and Sami Evangelista. “Distributed Behavioral Cartogra-
phy of Timed Automata”. In: Proceedings of the 21st European MPI Users’ Group Meeting
(EuroMPI/ASIA 2014) (Sept. 9–12, 2014). Ed. by Jack Dongarra, Yutaka Ishikawa, and Hori
Atsushi. Kyoto, Japan: ACM, Sept. 2014, pp. 109–114. DOI: 10.1145/2642769.2642784 (cit.

on pp. 45, 63).

[ACN15] Étienne André, Camille Coti, and Hoang Gia Nguyen. “Enhanced Distributed Behav-
ioral Cartography of Parametric Timed Automata”. In: Proceedings of the 17th Interna-
tional Conference on Formal Engineering Methods (ICFEM 2015) (Nov. 3–6, 2015). Ed.
by Michael Butler, Sylvain Conchon, and Fatiha Zaïdi. Vol. 9407. Lecture Notes in Com-
puter Science. Paris, France: Springer, Nov. 2015, pp. 319–335. ISBN: 978-3-319-25422-7.

DOI: 10.1007/978-3-319-25423-4_21 (cit. on pp. 45, 63).

[AF10] Étienne André and Laurent Fribourg. “Behavioral Cartography of Timed Automata”. In:
Proceedings of the 4th Workshop on Reachability Problems in Computational Models (RP
2010) (Aug. 28–29, 2010). Ed. by Antonín Kučera and Igor Potapov. Vol. 6227. Lecture
Notes in Computer Science. Brno, Czech Republic: Springer, Aug. 2010, pp. 76–90. DOI:

10.1007/978-3-642-15349-5_5 (cit. on pp. 5, 44, 45).

91

https://doi.org/10.1007/BFb0054177
https://doi.org/10.1007/BFb0054177
https://doi.org/10.1016/S0304-3975(02)00334-1
https://doi.org/10.1007/b71635
https://doi.org/10.1145/2642769.2642784
https://doi.org/10.1007/978-3-319-25423-4_21
https://doi.org/10.1007/978-3-642-15349-5_5

IMITATOR user manual

[AFS13] Étienne André, Laurent Fribourg, and Romain Soulat. “Merge and Conquer: State Merg-
ing in Parametric Timed Automata”. In: Proceedings of the 11th International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA 2013) (Oct. 15–18,
2013). Ed. by Dang-Van Hung and Mizuhito Ogawa. Vol. 8172. Lecture Notes in Com-
puter Science. Ha Noi, Viet Nam: Springer, Oct. 2013, pp. 381–396. DOI: 10.1007/978-3-

319-02444-8_27 (cit. on pp. 37, 49, 65, 66, 87).

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reason-
ing”. In: Proceedings of the 25th annual ACM symposium on Theory of computing (STOC
1993) (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal.
San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI:

10.1145/167088.167242 (cit. on pp. 5, 6, 14, 17, 37).

[AHW18] Étienne André, Ichiro Hasuo, and Masaki Waga. “Offline timed pattern matching un-
der uncertainty”. In: Proceedings of the 23rd International Conference on Engineering
of Complex Computer Systems (ICECCS 2018) (Dec. 12–14, 2018). Ed. by Anthony Wid-
jaja Lin and Jun Sun. Melbourne, Australia: IEEE Computer Society, 2018, pp. 10–20. DOI:

10.1109/ICECCS2018.2018.00010 (cit. on p. 67).

[AL17] Étienne André and Didier Lime. “Liveness in L/U-Parametric Timed Automata”. In:
Proceedings of the 17th International Conference on Application of Concurrency to Sys-
tem Design (ACSD 2017) (June 25–30, 2017). Ed. by Alex Legay and Klaus Schneider.
Zaragoza, Spain: IEEE, 2017, pp. 9–18. DOI: 10.1109/ACSD.2017.19 (cit. on pp. 42, 86).

[ALM20] Étienne André, Didier Lime, and Nicolas Markey. “Language Preservation Problems in
Parametric Timed Automata”. In: Logical Methods in Computer Science 16.1 (Jan. 2020).

DOI: 10.23638/LMCS-16(1:5)2020 (cit. on pp. 5, 43, 44, 86).

[ALR15] Étienne André, Didier Lime, and Olivier H. Roux. “Integer-Complete Synthesis for
Bounded Parametric Timed Automata”. In: Proceedings of the 9th International Work-
shop on Reachability Problems (RP 2015) (Sept. 21–23, 2015). Ed. by Mikołaj Bojańczyk,
Sławomir Lasota, and Igor Potapov. Vol. 9328. Lecture Notes in Computer Science. War-
saw, Poland: Springer, Sept. 2015, pp. 7–19. DOI: 10.1007/978-3-319-24537-9_2 (cit. on

p. 64).

[ALR16] Étienne André, Didier Lime, and Olivier H. Roux. “Decision Problems for Parametric
Timed Automata”. In: Proceedings of the 18th International Conference on Formal En-
gineering Methods (ICFEM 2016) (Nov. 16–18, 2016). Ed. by Kazuhiro Ogata, Mark Law-
ford, and Shaoying Liu. Vol. 10009. Lecture Notes in Computer Science. Tokyo, Japan:
Springer, 2016, pp. 400–416. DOI: 10.1007/978-3-319-47846-3_25 (cit. on p. 86).

[ALR18a] Étienne André, Didier Lime, and Mathias Ramparison. “TCTL model checking
lower/upper-bound parametric timed automata without invariants”. In: Proceedings
of the 16th International Conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS 2018) (Sept. 4–6, 2018). Ed. by David N. Jansen and Pavithra Prabhakar.
Vol. 11022. Lecture Notes in Computer Science. Beijing, China: Springer, 2018, pp. 1–17.

DOI: 10.1007/978-3-030-00151-3_3 (cit. on p. 86).

[ALR18b] Étienne André, Didier Lime, and Mathias Ramparison. “Timed automata with paramet-
ric updates”. In: Proceedings of the 18th International Conference on Application of Con-
currency to System Design (ACSD 2018) (June 24–29, 2018). Ed. by Gabriel Juhás, Thomas
Chatain, and Radu Grosu. Bratislava, Slovakia: IEEE, 2018, pp. 21–29. DOI: 10.1109/ACSD.

2018.000-2 (cit. on p. 17).

[Alu+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin
Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. “The Algorithmic
Analysis of Hybrid Systems”. In: Theoretical Computer Science 138.1 (1995), pp. 3–34.

DOI: 10.1016/0304-3975(94)00202-T (cit. on p. 17).

92

https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1145/167088.167242
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1109/ACSD.2017.19
https://doi.org/10.23638/LMCS-16(1:5)2020
https://doi.org/10.1007/978-3-319-24537-9_2
https://doi.org/10.1007/978-3-319-47846-3_25
https://doi.org/10.1007/978-3-030-00151-3_3
https://doi.org/10.1109/ACSD.2018.000-2
https://doi.org/10.1109/ACSD.2018.000-2
https://doi.org/10.1016/0304-3975(94)00202-T

IMITATOR user manual

[AMP21] Étienne André, Dylan Marinho, and Jaco van de Pol. “A Benchmarks Library for Ex-
tended Timed Automata”. In: Proceedings of the 15th International Conference on Tests
and Proofs (TAP 2021) (June 21–25, 2021). Ed. by Frédéric Loulergue and Franz Wotawa.
Vol. 12740. Lecture Notes in Computer Science. virtual: Springer, 2021, pp. 39–50. DOI:

10.1007/978-3-030-79379-1_3 (cit. on pp. 5, 87).

[And+09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg. “An In-
verse Method for Parametric Timed Automata”. In: International Journal of Foundations
of Computer Science 20.5 (2009), pp. 819–836. DOI: 10.1142/S0129054109006905 (cit. on

pp. 5, 43).

[And+15] Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng Sun. “Reachabil-
ity Preservation Based Parameter Synthesis for Timed Automata”. In: Proceedings of
the 7th NASA Formal Methods Symposium (NFM 2015) (Apr. 27–29, 2015). Ed. by Klaus
Havelund, Gerard J. Holzmann, and Rajeev Joshi. Vol. 9058. Lecture Notes in Computer
Science. Pasadena, CA, USA: Springer, Apr. 2015, pp. 50–65. DOI: 10.1007/978-3-319-

17524-9_5 (cit. on pp. 5, 45).

[And+17] Étienne André, Hoang Gia Nguyen, Laure Petrucci, and Jun Sun. “Parametric model
checking timed automata under non-Zenoness assumption”. In: Proceedings of the 9th
NASA Formal Methods Symposium (NFM 2017) (May 16–18, 2017). Ed. by Clark Barrett
and Temesghen Kahsai. Vol. 10227. Lecture Notes in Computer Science. Moffett Field,
CA, USA: Springer, 2017, pp. 35–51. DOI: 10.1007/978-3-319-57288-8_3 (cit. on p. 42).

[And+19] Étienne André, Vincent Bloemen, Laure Petrucci, and Jaco van de Pol. “Minimal-Time
Synthesis for Parametric Timed Automata”. In: Proceedings of the 25th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2019), Part II (Apr. 8–11, 2019). Ed. by Tomáš Vojnar and Lijun Zhang. Vol. 11428. Lec-
ture Notes in Computer Science. Prague, Czech Repubic: Springer, 2019, pp. 211–228.

DOI: 10.1007/978-3-030-17465-1_12 (cit. on p. 38).

[And+21] Étienne André, Jaime Arias, Laure Petrucci, and Jaco Van de Pol. “Iterative Bounded
Synthesis for Efficient Cycle Detection in Parametric Timed Automata”. In: Proceedings
of the 27th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2021) (Mar. 27–Apr. 1, 2021). Ed. by Jan Friso Groote and Kim
G. Larsen. Vol. 12651. Virtual: Springer, 2021, pp. 311–329. DOI: 10.1007/978-3-030-

72016-2_17 (cit. on pp. 5, 40).

[And+22] Étienne André, Dylan Marinho, Laure Petrucci, and Jaco van de Pol. Efficient Convex
Zone Merging in Parametric Timed Automata. Tech. rep. Submitted. 2022 (cit. on pp. 65,

66).

[And13a] Étienne André. “Dynamic Clock Elimination in Parametric Timed Automata”. In: Pro-
ceedings of the 1st French Singaporean Workshop on Formal Methods and Applications
(FSFMA 2013) (July 15–16, 2013). Ed. by Christine Choppy and Jun Sun. Vol. 31. Ope-
nAccess Series in Informatics (OASIcs). Singapore: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl Publishing, July 2013, pp. 18–31. DOI: 10.4230/OASIcs.FSFMA.

2013.18 (cit. on p. 64).

[And13b] Étienne André. “Observer Patterns for Real-Time Systems”. In: Proceedings of the 18th
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS
2013) (July 17–19, 2013). Ed. by Yang Liu and Andrew Martin. Singapore: IEEE Computer
Society, July 2013, pp. 125–134. DOI: 10.1109/ICECCS.2013.26 (cit. on pp. 38, 39).

93

https://doi.org/10.1007/978-3-030-79379-1_3
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1007/978-3-319-17524-9_5
https://doi.org/10.1007/978-3-319-17524-9_5
https://doi.org/10.1007/978-3-319-57288-8_3
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.4230/OASIcs.FSFMA.2013.18
https://doi.org/10.4230/OASIcs.FSFMA.2013.18
https://doi.org/10.1109/ICECCS.2013.26

IMITATOR user manual

[And16] Étienne André. “Parametric Deadlock-Freeness Checking Timed Automata”. In: Pro-
ceedings of the 13th International Colloquium on Theoretical Aspects of Computing (IC-
TAC 2016) (Oct. 24–28, 2016). Ed. by Augusto Cesar Alves Sampaio and Farn Wang.
Vol. 9965. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2016, pp. 469–
478. DOI: 10.1007/978-3-319-46750-4_27 (cit. on pp. 5, 39).

[And21] Étienne André. “IMITATOR 3: Synthesis of timing parameters beyond decidability”. In:
Proceedings of the 33rd International Conference on Computer-Aided Verification (CAV
2021) (July 18–23, 2021). Ed. by Rustan Leino and Alexandra Silva. Vol. 12759. Lecture
Notes in Computer Science. virtual: Springer, 2021, pp. 1–14. DOI: 10.1007/978-3-030-

81685-8_26 (cit. on p. 5).

[ANP17] Étienne André, Hoang Gia Nguyen, and Laure Petrucci. “Efficient parameter synthe-
sis using optimized state exploration strategies”. In: Proceedings of the 22nd Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS 2017) (Nov. 6–
8, 2017). Ed. by Zhenjiang Hu and Guangdong Bai. Fukuoka, Japan: IEEE, 2017, pp. 1–10.

DOI: 10.1109/ICECCS.2017.28 (cit. on p. 64).

[AS11] Étienne André and Romain Soulat. “Synthesis of Timing Parameters Satisfying Safety
Properties”. In: Proceedings of the 5th Workshop on Reachability Problems in Com-
putational Models (RP 2011) (Sept. 28–30, 2011). Ed. by Giorgio Delzanno and Igor
Potapov. Vol. 6945. Lecture Notes in Computer Science. Genova, Italy: Springer, Sept.
2011, pp. 31–44. DOI: 10.1007/978-3-642-24288-5_5 (cit. on p. 44).

[Beh+03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim Guldstrand Larsen. “Static
Guard Analysis in Timed Automata Verification”. In: Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2003), Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware (ETAPS 2003) (Apr. 7–11, 2003). Ed. by Hubert Garavel and John Hatcliff. Vol. 2619.
Lecture Notes in Computer Science. Warsaw, Poland: Springer, 2003, pp. 254–277. DOI:

10.1007/3-540-36577-X_18 (cit. on p. 64).

[Beh+06] Gerd Behrmann, Patricia Bouyer, Kim Guldstrand Larsen, and Radek Pelánek. “Lower
and upper bounds in zone-based abstractions of timed automata”. In: International
Journal on Software Tools for Technology Transfer 8.3 (2006), pp. 204–215. DOI: 10.1007/

s10009-005-0190-0 (cit. on p. 64).

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma Polyhedra Library:
Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of
Hardware and Software Systems”. In: Science of Computer Programming 72.1–2 (2008),
pp. 3–21. DOI: 10.1016/j.scico.2007.08.001 (cit. on pp. 58, 87).

[BL09] Laura Bozzelli and Salvatore La Torre. “Decision problems for lower/upper bound para-
metric timed automata”. In: Formal Methods in System Design 35.2 (2009), pp. 121–151.

DOI: 10.1007/s10703-009-0074-0 (cit. on p. 86).

[Bou+04] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. “Updatable
Timed Automata”. In: Theoretical Computer Science 321.2-3 (Aug. 2004), pp. 291–345.

DOI: 10.1016/j.tcs.2004.04.003 (cit. on p. 17).

[Bud+17] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian
Junges, and Andrea Turrini. “JANI: Quantitative Model and Tool Interaction”. In: Pro-
ceedings of the 23rd International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2017), Part II, Held as Part of the European Joint
Conferences on Theory and Practice of Software (ETAPS 2017) (Apr. 22–29, 2017). Ed. by
Axel Legay and Tiziana Margaria. Vol. 10206. Lecture Notes in Computer Science. Upp-
sala, Sweden, 2017, pp. 151–168. DOI: 10.1007/978-3-662-54580-5_9 (cit. on p. 55).

94

https://doi.org/10.1007/978-3-319-46750-4_27
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1109/ICECCS.2017.28
https://doi.org/10.1007/978-3-642-24288-5_5
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/978-3-662-54580-5_9

IMITATOR user manual

[CL00] Franck Cassez and Kim Guldstrand Larsen. “The Impressive Power of Stopwatches”. In:
CONCUR (Aug. 22–25, 2000). Ed. by Catuscia Palamidessi. Vol. 1877. Lecture Notes in
Computer Science. University Park, PA, USA: Springer, 2000, pp. 138–152. DOI: 10.1007/

3-540-44618-4_12 (cit. on p. 17).

[HHW95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. “A User Guide to HyTech”.
In: Proceedings of the First International Workshop on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS 1995) (May 19–20, 1995). Ed. by Ed Brinksma, Rance
Cleaveland, Kim Guldstrand Larsen, Tiziana Margaria, and Bernhard Steffen. Vol. 1019.
Lecture Notes in Computer Science. Aarhus, Denmark: Springer, 1995, pp. 41–71. ISBN:
3-540-60630-0. DOI: 10.1007/3-540-60630-0_3 (cit. on pp. 6, 18, 54).

[Hun+02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. “Linear para-
metric model checking of timed automata”. In: Journal of Logic and Algebraic Program-
ming 52-53 (2002), pp. 183–220. DOI: 10.1016/S1567-8326(02)00037-1 (cit. on p. 86).

[IMI-Web] IMITATOR. IMITATORWeb page. https://www.imitator.fr. 2022 (cit. on pp. 5, 60).

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. “Integer Parameter Synthe-
sis for Real-Time Systems”. In: IEEE Transactions on Software Engineering 41.5 (2015),
pp. 445–461. DOI: 10.1109/TSE.2014.2357445 (cit. on pp. 5, 37, 86).

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical Abstract Domains
for Static Analysis”. In: Proceedings of the 21st International Conference on Computer
Aided Verification (CAV 2009) (June 26–July 2, 2009). Vol. 5643. Lecture Notes in Com-
puter Science. Grenoble, France: Springer, 2009, pp. 661–667. DOI: 10.1007/978-3-642-

02658-4_52 (cit. on p. 87).

[Li09] Guangyuan Li. “Checking Timed Büchi Automata Emptiness Using LU-Abstractions”.
In: Proceedings of the 7th International Conference on Formal Modeling and Analy-
sis of Timed Systems (FORMATS 2009) (Sept. 14–16, 2009). Ed. by Joël Ouaknine and
Frits W. Vaandrager. Vol. 5813. Lecture Notes in Computer Science. Budapest, Hungary:
Springer, 2009, pp. 228–242. DOI: 10.1007/978-3-642-04368-0_18 (cit. on p. 64).

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a Nutshell”. In: In-
ternational Journal on Software Tools for Technology Transfer 1.1-2 (1997), pp. 134–152.

DOI: 10.1007/s100090050010 (cit. on pp. 18, 51).

[NPV18] Hoang Gia Nguyen, Laure Petrucci, and Jaco Van de Pol. “Layered and Collecting NDFS
with Subsumption for Parametric Timed Automata”. In: Proceedings of the 23rd Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS 2018) (Dec. 12–
14, 2018). Ed. by Anthony Widjaja Lin and Jun Sun. Melbourne, Australia: IEEE Com-
puter Society, Dec. 2018, pp. 1–9. DOI: 10.1109/ICECCS2018.2018.00009 (cit. on pp. 5, 40,

41, 65, 68).

[Sun+09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. “PAT: Towards Flexible Verifica-
tion under Fairness”. In: Proceedings of the 21st International Conference on Computer
Aided Verification (CAV 2009) (June 26–July 2, 2009). Ed. by Ahmed Bouajjani and Oded
Maler. Vol. 5643. Lecture Notes in Computer Science. Grenoble, France: Springer, 2009,
pp. 709–714. ISBN: 978-3-642-02657-7. DOI: 10.1007/978-3-642-02658-4_59 (cit. on p. 6).

[Tri09] Stavros Tripakis. “Checking timed Büchi automata emptiness on simulation graphs”.
In: ACM Transactions on Computational Logic 10.3 (2009), 15:1–15:19. DOI: 10.1145/

1507244.1507245 (cit. on p. 64).

[Wan+15] Ting Wang, Jun Sun, Xinyu Wang, Yang Liu, Yuanjie Si, Jin Song Dong, Xiaohu Yang, and
Xiaohong Li. “A Systematic Study on Explicit-State Non-Zenoness Checking for Timed
Automata”. In: IEEE Transactions on Software Engineering 41.1 (2015), pp. 3–18. DOI: 10.

1109/TSE.2014.2359893 (cit. on p. 42).

95

https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/3-540-60630-0_3
https://doi.org/10.1016/S1567-8326(02)00037-1
https://www.imitator.fr
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-04368-0_18
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1145/1507244.1507245
https://doi.org/10.1145/1507244.1507245
https://doi.org/10.1109/TSE.2014.2359893
https://doi.org/10.1109/TSE.2014.2359893

	Table of contents
	Introduction
	A brief introduction to the syntax
	Generalities
	Model syntax
	Property syntax

	IMITATOR Parametric Timed Automata
	Formal definition
	Clocks, parameters
	Discrete rational variables
	Linear constraints
	Arithmetic expressions
	IMITATOR Parametric Timed Automata
	Networks of IMITATOR Parametric Timed Automata

	Initial state and initialization of variables
	Synchronization model
	Global constants
	Discrete variables
	Types
	Default initial value
	Updates
	Runtime errors

	Parameter synthesis using IMITATOR
	Synthesis and emptiness
	Reachability
	Safety
	EF-minimization
	EF-maximization
	EF with minimal time reachability
	Parameter synthesis using patterns
	Parametric deadlock-freeness checking
	Parametric cycle synthesis
	Accepting cycle synthesis
	Accepting cycle with generalized acceptance condition (BFS)
	Any cycle synthesis

	Parametric non-Zeno cycle synthesis
	Inverse method: Trace preservation and robustness
	Behavioral cartography
	Parametric reachability preservation
	Summary
	Symbolic state space computation

	Understanding the IMITATOR result
	Header
	The resulting constraint
	The cartography result
	General statistics
	Projection onto some parameters

	Graphical output and translation
	State space
	Visualizing the synthesized constraint in 2D
	Translation to Uppaal
	Translation to HyTech
	Translation to Jani
	Export to graphics
	Export to LaTeX

	Inside the box
	Language and libraries
	Symbolic states
	Type system
	Type checking
	Expression type solving
	Literal number type inference
	Type conversion

	Installation

	List of options
	Grammar
	Variable names
	Grammar of the model
	Automata descriptions
	Initial state

	Grammar of the property file
	Reserved words

	Missing features
	ASAP transitions
	Parameterized models
	Other synchronization models
	Initial intervals for discrete variables
	Complex updates for discrete variables
	Synthesis for L/U-PTA

	Acknowledgments
	Licensing and credits
	References

